# Cisspinoblended disnub hexecontatetradisoctachoron

Cisspinoblended disnub hexecontatetradisoctachoron | |
---|---|

Rank | 4 |

Type | Uniform |

Space | Spherical |

Notation | |

Bowers style acronym | Cinbad segado |

Elements | |

Cells | 8 great icosahedra, 8 icosahedra, 192 tetrahedra, 96+64 octahedra, 32+32 tetrahemihexahedra, 32 cubohemioctahedra |

Faces | 1312 triangles, 192 squares, 64 hexagons |

Edges | 288+384+96+48 |

Vertices | 96 |

Measures (edge length 1) | |

Circumradius | 1 |

Related polytopes | |

Army | Sadi |

Regiment | Disdi |

Conjugate | None |

Abstract & topological properties | |

Euler characteristic | 384 |

Orientable | No |

Properties | |

Symmetry | D_{4}+, order 96 |

Convex | No |

The **cisspinoblended disnub hexecontatetradisoctachoron**, or **cinbad segado**, is a nonconvex uniform polychoron that consists of 8 great icosahedra, 8 icosahedra, 192 tetrahedra, 96+64 octahedra, 32+32 tetrahemihexahedra, and 32 cubohemioctahedra. One great icosahedron, one icosahedron, eight tetrahedra, ten octahedra, four tetrahemihexahedra, and four cubohemioctahedra join at each vertex.

It can be obtained as the blend of a snub hexecontatetrasnub-snub disoctachoron, 4 icositetrachora, and 4 hexadecahemihexadecachora. In the process, some of the octahedron cells blend out.

## Vertex coordinates[edit | edit source]

Its vertices are the same as those of its regiment colonel, the disnub disicositetrachoron.

## Related polychora[edit | edit source]

The blend components and facet counts of the cisspinoblended disnub hexecontatetradisoctachoron are the same as those of the transspinoblended disnub hexecontatetradisoctachoron, differing only in orientation.

It also has the same facet counts as the cisblended disnub hexecontatetradisoctachoron and the one similar to it, although the blend components are not the same.

## External links[edit | edit source]

- Bowers, Jonathan. "Category 30: Idtessids" (#1905).

This article is a stub. You can help Polytope Wiki by expanding it. |