Cubic honeycomb

From Polytope Wiki
Jump to navigation Jump to search
Cubic honeycomb
Partial cubic honeycomb.png
Rank4
TypeRegular
SpaceEuclidean
Notation
Bowers style acronymChon
Coxeter diagramCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Schläfli symbol{4,3,4}
Elements
CellsN cubes
Faces3N squares
Edges3N
VerticesN
Vertex figureOctahedron, edge length 2
Measures (edge length 1)
Vertex density
Dual cell volume
Related polytopes
ArmyChon
RegimentChon
DualCubic honeycomb
Petrie dualMucubic honeycomb
ConjugateNone
Topological properties
OrientableYes
Properties
SymmetryR4
ConvexYes

The cubic honeycomb, or chon, is the only regular honeycomb or tesselation of 3D Euclidean space. 8 cubes join at each vertex of this honeycomb. It is also the 3D hypercubic honeycomb.

This honeycomb can be alternated into a tetrahedral-octahedral honeycomb, which is uniform.

Vertex coordinates[edit | edit source]

The vertices of a cubic honeycomb of edge length 1 are given by

  • in which .

Representations[edit | edit source]

A cubic honeycomb has the following Coxeter diagrams:

  • CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png (regular)
  • CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png (as expanded cubic honecyomb)
  • CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png (S4 symmetry)
  • CDel node 1.pngCDel ultra.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png (various square prismatic honeycombs)
  • CDel node 1.pngCDel ultra.pngCDel node.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
  • CDel node 1.pngCDel ultra.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
  • CDel node 1.pngCDel ultra.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
  • CDel node 1.pngCDel ultra.pngCDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
  • CDel node 1.pngCDel ultra.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
  • CDel node 1.pngCDel ultra.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel ultra.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel ultra.pngCDel node.png (various apeirogonal triprismatic honeycombs)
  • CDel node 1.pngCDel ultra.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel ultra.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel ultra.pngCDel node.png
  • CDel node 1.pngCDel ultra.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel ultra.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel ultra.pngCDel node.png
  • CDel node 1.pngCDel ultra.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel ultra.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel ultra.pngCDel node 1.png
  • qo3oo3oq3oo3*a&#zx (as hull of two alternate tetrahedral-octahedral honeycombs)

Gallery[edit | edit source]

Related polytopes[edit | edit source]

o4o3o4o truncations
Name OBSA Schläfli symbol CD diagram Picture
Cubic honeycomb chon {4,3,4} CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Cubic tiling.png
Truncated cubic honeycomb tich t{4,3,4} CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Truncated cubic tiling.png
Rectified cubic honeycomb rich r{4,3,4} CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Rectified cubic tiling.png
Bitruncated cubic honeycomb batch 2t{4,3,4} CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Bitruncated cubic tiling.png
Rectified cubic honeycomb rich r{4,3,4} CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Rectified cubic tiling.png
Truncated cubic honeycomb tich t{4,3,4} CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Truncated cubic tiling.png
Cubic honeycomb chon {4,3,4} CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Cubic tiling.png
Small rhombated cubic honeycomb srich rr{4,3,4} CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Cantellated cubic tiling.png
Great rhombated cubic honeycomb grich tr{4,3,4} CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Cantitruncated cubic tiling.png
Small rhombated cubic honeycomb srich rr{4,3,4} CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Cantellated cubic tiling.png
Great rhombated cubic honeycomb grich tr{4,3,4} CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Cantitruncated cubic tiling.png
Small prismated cubic honeycomb = Cubic honeycomb chon t0,3{4,3,4} CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Cubic tiling.png
Prismatorhombated cubic honeycomb prich t0,1,3{4,3,4} CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Runcitruncated cubic tiling.png
Prismatorhombated cubic honeycomb prich t0,1,3{4,3,4} CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Runcitruncated cubic tiling.png
Great prismated cubic honeycomb gippich t0,1,2,3{4,3,4} CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Omnitruncated cubic tiling.png

External links[edit | edit source]