Dodecahedral prism

From Polytope Wiki
Revision as of 01:28, 25 March 2022 by Username5243 (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Dodecahedral prism
Dodecahedral prism.png
Rank4
TypeUniform
SpaceSpherical
Notation
Bowers style acronymDope
Coxeter diagramx x5o3o (CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png)
Elements
Cells12 pentagonal prisms, 2 dodecahedra
Faces30 squares, 24 pentagons
Edges20+60
Vertices40
Vertex figureTriangular pyramid, edge lengths (1+5)/2 (base), 2 (legs)
Measures (edge length 1)
Circumradius
Hypervolume
Dichoral anglesPip–4–pip:
 Doe–5–pip: 90°
Height1
Central density1
Number of external pieces14
Level of complexity4
Related polytopes
ArmyDope
RegimentDope
DualIcosahedral tegum
ConjugateGreat stellated dodecahedral prism
Abstract & topological properties
Flag count960
Euler characteristic0
OrientableYes
Properties
SymmetryH3×A1, order 240
ConvexYes
NatureTame

The dodecahedral prism or dope is a prismatic uniform polychoron that consists of 2 dodecahedra and 12 pentagonal prisms. Each vertex joins 1 dodecahedron and 3 pentagonal prisms. It is a prism based on the dodecahedron. As such it is also a convex segmentochoron (designated K-4.74 on Richard Klitzing's list).

Gallery[edit | edit source]

Vertex coordinates[edit | edit source]

The vertices of a dodecahedral prism of edge length 1 are given by all permutations and changes of sign of the first three coordinates of:

along with all even permutations and all sign changes of:

Representations[edit | edit source]

A dodecahedral prism has the following Coxeter diagrams:

  • x x5o3o (full symmetry)
  • xx5oo3oo&#x (bases considered separately)

External links[edit | edit source]