Hexateron

The hexateron, hix or triangular disphenoid, also commonly called the 5-simplex, is the simplest possible non-degenerate polyteron. The full symmetry version has 6 regular pentachora as cells, joining 5 to a vertex, and is one of the 3 regular polytera. It is the 5-dimensional simplex.

Hexateron
5-simplex t0.svg
Rank5
TypeRegular
SpaceSpherical
Notation
Bowers style acronymHix
Coxeter diagramx3o3o3o3o (CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png)
Schläfli symbol{3,3,3,3}
Tapertopic notation14
Elements
Tera6 pentachora
Cells15 tetrahedra
Faces20 triangles
Edges15
Vertices6
Vertex figurePentachoron, edge length 1 5-simplex verf.png
Measures (edge length 1)
Circumradius
Edge radius
Face radius
Cell radius
Inradius
Hypervolume
Diteral angle
HeightsPoint atop pen:
 Dyad atop perp tet:
 Trig atop perp trig:
Central density1
Number of external pieces6
Level of complexity1
Related polytopes
ArmyHix
RegimentHix
DualHexateron
ConjugateNone
Abstract & topological properties
Flag count720
Euler characteristic2
OrientableYes
Properties
SymmetryA5, order 720
ConvexYes
NatureTame

It can be viewed as a segmentoteron in three ways: as a pentachoric pyramid, as a dyad atop perpendicular tetrahedron, and as a triangle atop perpendicular triangle. This makes it the triangular member of an infinite family of isogonal polygonal disphenoids.

Vertex coordinatesEdit

The vertices of a regular hexateron of edge length 1, centered at the origin, are given by:

  •  
  •  
  •  
  •  
  •  

Much simpler coordinates can be given in six dimensions, as all permutations of:

  •  

RepresentationsEdit

A regular hexateron has the following Coxeter diagrams:

  • x3o3o3o3o (full symmetry)
  • ox3oo3oo3oo&#x (A4 axial, pentachoric pyramid)
  • xo ox3oo3oo&#x (A3×A1 symmetry, tetrahedral scalene)
  • xo3oo ox3oo&#x (A2×A2 axial, triangular disphenoid)
  • oxo3ooo3ooo&#x (A3 symmetry, tetrahedral pyramidal pyramid)
  • oxo oox3ooo&#x A2×A1 symmetry, triangular scalene pyramid)
  • xoo oxo oox&#x (A1×A1×A1 symmetry, digonal trisphenoid)
  • ooox ooxo&#x (A1×A1 symmetry, disphenoidal pyramidal pyramid)
  • ooox3oooo&#x (A2 symmetry, triangular symmetry only)
  • oooox&#x (A1 symmetrry only)
  • oooooo&#x (no symmetry, fully irregular)

VariationsEdit

The regular hexateron has 2 subsymmetrical forms that remain isogonal:

Related polytopesEdit

o3o3o3o3o truncations
Name OBSA CD diagram Picture
Hexateron hix          
Rectified hexateron rix          
Dodecateron dot          
Rectified hexateron rix          
Hexateron hix          
Truncated hexateron tix          
Bitruncated hexateron bittix          
Bitruncated hexateron bittix          
Truncated hexateron tix          
Small rhombated hexateron sarx          
Small birhombidodecateron sibrid          
Small rhombated hexateron sarx          
Great rhombated hexateron garx          
Great birhombidodecateron gibrid          
Great rhombated hexateron garx          
Small prismated hexateron spix          
Small prismated hexateron spix          
Prismatotruncated hexateron pattix          
Prismatorhombated hexateron pirx          
Prismatorhombated hexateron pirx          
Prismatotruncated hexateron pattix          
Great prismated hexateron gippix          
Great prismated hexateron gippix          
Small cellidodecateron scad          
Celliprismated hexateron cappix          
Cellirhombidodecateron card          
Celligreatorhombated hexateron cograx          
Celliprismated hexateron cappix          
Celliprismatotruncatododecateron captid          
Celligreatorhombated hexateron cograx          
Great cellidodecateron gocad          

External linksEdit

  • Klitzing, Richard. "hix".