Inverted snub dodecadodecahedron

From Polytope Wiki
Jump to navigation Jump to search
Inverted snub dodecadodecahedron
Inverted snub dodecadodecahedron.png
Rank3
TypeUniform
SpaceSpherical
Notation
Bowers style acronymIsdid
Coxeter diagrams5/3s5s (CDel node h.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node h.pngCDel 5.pngCDel node h.png)
Elements
Faces60 triangles, 12 pentagons, 12 pentagrams
Edges60+60+30
Vertices60
Vertex figureIrregular pentagon, edge lengths 1, 1, (5–1)/2, 1, (1+5)/2
Inverted snub dodecadodecahedron vertfig.png
Measures (edge length 1)
Circumradius≈ 0.85163
Volume≈ 4.61431
Dihedral angles3–3: ≈ 130.49074°
 5–3: ≈ 68.64088°
 5/2–3: ≈ 11.12448°
Central density9
Number of external pieces372
Level of complexity39
Related polytopes
ArmyNon-uniform snid
RegimentIsdid
DualMedial inverted pentagonal hexecontahedron
ConjugateSnub dodecadodecahedron
Convex coreDodecahedron
Abstract & topological properties
Flag count600
Euler characteristic-6
OrientableYes
Genus4
Properties
SymmetryH3+, order 60
ConvexNo
NatureTame

The inverted snub dodecadodecahedron or isdid, is a uniform polyhedron. It consists of 60 snub triangles, 12 pentagrams, and 12 pentagons. Three triangles, 1 pentagon, and one pentagram meeting at each vertex. It can be constructed by alternation of the quasitruncated dodecadodecahedron and then setting all edge lengths to be equal.

Measures[edit | edit source]

The circumradius R ≈ 0.85163 of the inverted snub dodecadodecahedron with unit edge length is the smallest positive real root of:

Its volume V ≈ 4.61431 is given by the smallest positive real root of:

These same polynomials define the circumradius and volume of the snub dodecadodecahedron.

Related polyhedra[edit | edit source]

The inverted disnub dodecadodecahedron is a uniform polyhedron compound composed of the 2 opposite chiral forms of the inverted snub dodecadodecahedron.

o5/3o5o truncations
Name OBSA Schläfli symbol CD diagram Picture
Small stellated dodecahedron sissid {5/3,5} x5/3o5o (CDel node 1.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 5.pngCDel node.png)
Small stellated dodecahedron.png
Quasitruncated small stellated dodecahedron quit sissid t{5/3,5} x5/3x5o (CDel node 1.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 5.pngCDel node.png)
Small stellated truncated dodecahedron.png
Dodecadodecahedron did r{5,5/3} o5/3x5o (CDel node.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 5.pngCDel node.png)
Dodecadodecahedron.png
Truncated great dodecahedron tigid t{5,5/3} o5/3x5x (CDel node.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 5.pngCDel node 1.png)
Great truncated dodecahedron.png
Great dodecahedron gad {5,5/3} o5/3o5x (CDel node.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 5.pngCDel node 1.png)
Great dodecahedron.png
Complex ditrigonal rhombidodecadodecahedron (degenerate, ditdid+rhom) cadditradid rr{5,5/3} x5/3o5x (CDel node 1.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 5.pngCDel node 1.png)
Quasitruncated dodecadodecahedron quitdid tr{5,5/3} x5/3x5x (CDel node 1.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 5.pngCDel node 1.png)
Truncated dodecadodecahedron.png
Inverted snub dodecadodecahedron isdid sr{5,5/3} s5/3s5s (CDel node h.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node h.pngCDel 5.pngCDel node h.png)
Inverted snub dodecadodecahedron.png

External links[edit | edit source]