Quasitruncated great stellated dodecahedron

From Polytope Wiki
Jump to navigation Jump to search
Quasitruncated great stellated dodecahedron
Great stellated truncated dodecahedron.png
Rank3
TypeUniform
SpaceSpherical
Notation
Bowers style acronymQuit gissid
Coxeter diagramx5/3x3o (CDel node 1.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node.png)
Elements
Faces20 triangles, 12 decagrams
Edges30+60
Vertices60
Vertex figureIsosceles triangle, edge lengths 1, (5–5)/2, (5–5)/2
Great stellated truncated dodecahedron vertfig.png
Measures (edge length 1)
Circumradius
Volume
Dihedral angles10/3–3:
 10/3–10/3:
Central density13
Number of external pieces120
Level of complexity9
Related polytopes
ArmySemi-uniform Srid, edge lengths (pentagons), (triangles)
RegimentQuit gissid
DualGreat triakis icosahedron
ConjugateTruncated dodecahedron
Convex coreDodecahedron
Abstract & topological properties
Flag count360
Euler characteristic2
OrientableYes
Genus0
Properties
SymmetryH3, order 120
ConvexNo
NatureTame


The quasitruncated great stellated dodecahedron, or quit gissid, also called the great stellated truncated dodecahedron, is a uniform polyhedron. It consists of 20 triangles and 12 decagrams. Each vertex joins one triangle and two decagrams. As the name suggests, it can be obtained by quasitruncation of the great stellated dodecahedron.

Vertex coordinates[edit | edit source]

A quasitruncated great stellated dodecahedron of edge length 1 has vertex coordinates given by all even permutations of:

Related polyhedra[edit | edit source]

o5/3o3o truncations
Name OBSA Schläfli symbol CD diagram Picture
Great stellated dodecahedron gissid {5/3,3} x5/3o3o (CDel node 1.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node.png)
Great stellated dodecahedron.png
Quasitruncated great stellated dodecahedron quit gissid t{5/3,3} x5/3x3o (CDel node 1.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node.png)
Great stellated truncated dodecahedron.png
Great icosidodecahedron gid r{3,5/3} o5/3x3o (CDel node.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node.png)
Great icosidodecahedron.png
Truncated great icosahedron tiggy t{3,5/3} o5/3x3x (CDel node.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node 1.png)
Great truncated icosahedron.png
Great icosahedron gike {3,5/3} o5/3o3x (CDel node.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node 1.png)
Great icosahedron.png
Quasirhombicosidodecahedron qrid rr{3,5/3} x5/3o3x (CDel node 1.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node 1.png)
Uniform great rhombicosidodecahedron.png
Great quasitruncated icosidodecahedron gaquatid tr{3,5/3} x5/3x3x (CDel node 1.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node 1.png)
Great truncated icosidodecahedron.png
Great inverted snub icosidodecahedron gisid sr{3,5/3} s5/3s3s (CDel node h.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node h.pngCDel 3.pngCDel node h.png)
Great inverted snub icosidodecahedron.png

External links[edit | edit source]