Rectified small ditrigonary hexacosihecatonicosachoron
Rectified small ditrigonary hexacosihecatonicosachoron | |
---|---|
![]() | |
Rank | 4 |
Type | Uniform |
Space | Spherical |
Notation | |
Bowers style acronym | Rissidtixhi |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() |
Elements | |
Cells | 600 octahedra, 120 small ditrigonary icosidodecahedra, 120 great icosidodecahedra |
Faces | 2400+2400 triangles, 1440 pentagrams |
Edges | 7200 |
Vertices | 1200 |
Vertex figure | Ditrigonal prism, base edge lengths 1 and (√5–1)/2, side edge length 1 |
Measures (edge length 1) | |
Circumradius | |
Hypervolume | |
Dichoral angles | Gid–3–oct: |
Sidtid–5/2–gid: 144° | |
Sidtid–3–oct: | |
Central density | 9 |
Number of external pieces | 7560 |
Related polytopes | |
Army | Rahi |
Regiment | Rissidtixhi |
Conjugate | Rectified great ditrigonary hexacosihecatonicosachoron |
Convex core | Semi-uniform hexacosihecatonicosachoron |
Abstract & topological properties | |
Euler characteristic | –600 |
Orientable | Yes |
Properties | |
Symmetry | H4, order 14400 |
Convex | No |
Nature | Tame |
The rectified small ditrigonary hexacosihecatonicosachoron, or rissidtixhi, is a nonconvex uniform polychoron that consists of 600 regular octahedra, 120 small ditrigonary icosidodecahedra, and 120 great icosidodecahedra. 2 small ditrigonary icosidodecahedra, 3 great icosidodecahedra, and 3 octahedra join at each ditrigonal prismatic vertex. As the name suggests, it can be obtained by rectifying the small ditrigonary hexacosihecatonicosachoron.
Vertex coordinates[edit | edit source]
The vertices of a rectified small ditrigonary hexacosihecatonicosachoron of edge length 1 are given by all permutations of:
along with all even permutations of:
Related polychora[edit | edit source]
The rectified small ditrigonary hexacosihecatonicosachoron is the colonel of the largest non-snub regiment of uniform polychora, containing a total of 157 members, plus three compounds and three fissaries. Jonathan Bowers divides the rissidtixhi regiment into twenty subcategories.
The rectified small ditrigonary hexacosihecatonicosachoron contains the vertices and edges of the decagonal-decagrammic duoprism, the quasitruncated dodecadodecahedral prism, and the rectified icositetrachoron.
Index | Name | OBSA | Company | Subcategory |
---|---|---|---|---|
1147 | Rectified small ditrigonary hexacosihecatonicosachoron | Rissidtixhi | Rissidtixhi | Main nine |
1148 | Rectified ditrigonary dishecatonicosachoron | Ridtidohi | Ridtidohi | Main nine |
1149 | Rectified great ditrigonary hexacosihecatonicosachoron | Riggidtixhi | Riggidtixhi | Main nine |
1150 | Small ditrigonary dishecatonicosachoron | Sidditdy | Sidditdy | Main nine |
1151 | Retroditrigonary dishecatonicosachoron | Ridditdy | Ridditdy | Main nine |
1152 | Great ditrigonary dishecatonicosachoron | Gidditdy | Gidditdy | Main nine |
1153 | Ditrigonary hexacosidishecatonicosachoron | Dittixdy | Main nine | |
1154 | Ditrigonary trishecatonicosachoron | Dittathi | Main nine | |
1155 | Toroidal ditrigonary hexacosidishecatonicosachoron | Todtixady | Main nine | |
1156 | Small ditrigonary dishecatonicosihecatonicosachoron | Sidtid hihy | Sixteen trapezics | |
1157 | Ditrigonary hecatonicosidishecatonicosachoron | Dithidy | Sixteen trapezics |
External links[edit | edit source]
- Bowers, Jonathan. "Category 23: Rissidtixhi Regiment" (#1147).
- Bowers, Jonathan. "How to Make Rissidtixhi".
- Klitzing, Richard. "rissidtixhi".