Rhombihedron

From Polytope Wiki
Jump to navigation Jump to search
Rhombihedron
Compound of five cubes.png
Rank3
TypeUniform
SpaceSpherical
Notation
Bowers style acronymRhom
Elements
Components5 cubes
Faces30 squares
Edges60
Vertices20
Vertex figureGolden hexagram, edge length 2
Measures (edge length 1)
Circumradius
Inradius
Volume5
Dihedral angle90°
Central density5
Number of external pieces360
Level of complexity18
Related polytopes
ArmyDoe
RegimentSidtid
DualSmall icosicosahedron
ConjugateRhombihedron
Convex coreRhombic triacontahedron
Abstract & topological properties
Flag count240
Schläfli type{4,3}
OrientableYes
Properties
SymmetryH3, order 120
ConvexNo
NatureTame

The rhombihedron, rhom, or compound of five cubes is a uniform polyhedron compound. It consists of 30 squares. The vertices coincide in pairs, leading to 20 vertices where 6 squares join.

It has the same edges as the small ditrigonary icosidodecahedron.

This compound is sometimes considered to be regular, but it is not flag-transitive, despite the fact it is vertex, edge, and face-transitive. It is however regular if you consider conjugacies along with its other symmetries.

Its quotient prismatic equivalent is the cubic pentachoroorthowedge, which is seven-dimensional.

Gallery[edit | edit source]

5cube-rhom.png

Vertex coordinates[edit | edit source]

The vertices of a rhombihedron of edge length 1 are given by:

along with all even permutations of:

External links[edit | edit source]