Small ditrigonary icosidodecahedral antiprism

The small ditrigonary icosidodecahedral antiprism or sidtidap, is a nonconvex uniform polychoron that consists of 2 small ditrigonary icosidodecahedra, 12 pentagrammic antiprisms, and 40 tetrahedra. Each vertex joins 1 small ditrigonary icosidodecahedron, 3 pentagrammic antiprisms, and 4 tetrahedra.

Small ditrigonary icosidodecahedral antiprism
Sidtidap.png
Rank4
TypeUniform
SpaceSpherical
Notation
Bowers style acronymSidtidap
Coxeter diagramβ2β5o3o (CDel node h3.pngCDel 2x.pngCDel node h3.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png)
Elements
Cells40 tetrahedra, 12 pentagrammic antiprisms, 2 small ditrigonary icosidodecahedra
Faces40+120 triangles, 24 pentagrams
Edges60+120
Vertices40
Vertex figureTriangular cupola, edge lengths (5–1)/2 (3 base edges), 1 (remaining edges)
Measures (edge length 1)
Circumradius
Hypervolume
Dichoral anglesTet–3–stap:
 Sidtid–3–tet:
 Sidtid–5/2–stap: 90°
Height
Number of external pieces174
Level of complexity32
Related polytopes
ArmySemi-uniform Dope
RegimentSidtidap
DualSmall triambic icosahedral antitegum
ConjugateNone
Abstract & topological properties
Euler characteristic–10
OrientableYes
Properties
SymmetryH3×A1, order 240
ConvexNo
NatureTame

It can be obtained as a holosnub dodecahedral prism.

Cross-sectionsEdit

 

Vertex coordinatesEdit

The vertices of a small ditrigonary icosidodecahedral antiprism of edge length 1 are given by:

  •  

along with all even permutations of the first three coordinates of:

  •  

Related polychoraEdit

The regiment of the small ditrigonary icosidodecahedral antiprism also includes the ditrigonary dodecadodecahedral antiprism and the great ditrigonary icosidodecahedral antiprism.

The small icosicosidodecahedral alterprism is a partial Stott expansion of this polychoron.

External linksEdit