❴10,10∣3❵

From Polytope Wiki
Jump to navigation Jump to search
{10,10∣3}
Rank3
Dimension3
TypeRegular
SpaceHyperbolic
Notation
Schläfli symbol{10,10∣3}
Elements
FacesN  decagons
Edges5N 
VerticesN 
Vertex figureSkew decagon, edge length
HolesTriangles
Measures (edge length 1)
Circumradius
Related polytopes
Dual{10,10∣3}
φ 2 Icosahedron
φ 4 Great dodecahedron
Convex hullCyclotruncated dodecahedral-icosahedral honeycomb
Abstract & topological properties
Flag count20N 
Schläfli type{10,10}
OrientableYes
Genus
Properties
Symmetry
ConvexNo
Dimension vector(2,1,2)
History
Discovered byCyril Garner
First discovered1967

The {10,10∣3} is a compact regular skew apeirohedron in 3-dimensional hyperbolic space. Its faces are precisely the decagonal faces of the cyclotruncated dodecahedral-icosahedral honeycomb. It is a self-dual polyhedron, and it also shares a symmetry group with another hyperbolic regular skew apeirohedron: {6,6∣5}.

Bibliography[edit | edit source]

  • Garner, Cyril (1967), "Regular skew polyhedra in hyperbolic three-space" (PDF), Canadian Journal of Mathematics, 19, doi:10.4153/CJM-1967-106-9