❴12,4∣3❵

From Polytope Wiki
Jump to navigation Jump to search
{12,4∣3}
Rank3
Dimension3
TypeRegular
SpaceHyperbolic
Notation
Schläfli symbol{12,4∣3}
Elements
FacesN  dodecagons
Edges6N 
Vertices3N 
Vertex figureSkew square, edge length
Holestriangles
Related polytopes
ArmyDitrah
RegimentDitrah
Dual{12,4∣3}
φ 2 Triangular dihedron
Convex hullDistriangular tiling honeycomb
Abstract & topological properties
Flag count24N 
Schläfli type{12,4}
OrientableYes
Genus
Properties
Symmetry[[3,6,3]]
ConvexNo
Dimension vector(2,1,2)
History
Discovered byCyril Garner
First discovered1967

The {12,4∣3} is a paracompact regular skew apeirohedron in 3-dimensional hyperbolic space. Its faces are precisely the dodecagonal faces of the distriangular tiling honeycomb.

Bibliography[edit | edit source]

  • Garner, Cyril (1967), "Regular skew polyhedra in hyperbolic three-space" (PDF), Canadian Journal of Mathematics, 19, doi:10.4153/CJM-1967-106-9