❴6,12∣3❵

From Polytope Wiki
Jump to navigation Jump to search
{6,12∣3}
Rank3
Dimension3
TypeRegular
SpaceHyperbolic
Notation
Schläfli symbol{6,12∣3}
Elements
Faces2N  hexagons
Edges3N 
VerticesN 
Vertex figureSkew dodecagon, edge length
HolesTriangles
Related polytopes
Dual{12,6∣3}
φ 2 Triangular tiling
Convex hullCyclotruncated tetrahedral-triangular tiling honeycomb
Abstract & topological properties
Flag count12N 
Schläfli type{6,12}
OrientableYes
Genus
Properties
Symmetry[(6,3,3,3)]
ConvexNo
Dimension vector(2,1,2)
History
Discovered byCyril Garner
First discovered1967

The {6,12∣3} is a paracompact regular skew apeirohedron in 3-dimensional hyperbolic space. Its faces are precisely the hexagonal faces of the cyclotruncated tetrahedral-triangular tiling honeycomb.

Bibliography[edit | edit source]

  • Garner, Cyril (1967), "Regular skew polyhedra in hyperbolic three-space" (PDF), Canadian Journal of Mathematics, 19, doi:10.4153/CJM-1967-106-9