❴8,6∣3❵

From Polytope Wiki
Jump to navigation Jump to search
{8,6∣3}
Rank3
Dimension3
TypeRegular
SpaceHyperbolic
Notation
Schläfli symbol{8,6∣3}
Elements
Faces3N  octagons
Edges12N 
Vertices4N 
Vertex figureSkew hexagon, edge length
HolesTriangles
Measures (edge length 1)
Circumradius
Related polytopes
ArmyCyticth
RegimentCyticth
Dual{6,8∣3}
φ 2 Tetrahedron
Convex hullCyclotruncated cubic-tetrahedral honeycomb
Abstract & topological properties
Flag count48N 
Schläfli type{8,6}
OrientableYes
Genus
Properties
Symmetry
ConvexNo
Dimension vector(2,1,2)
History
Discovered byCyril Garner
First discovered1967

The {8,6∣3} is a compact regular skew apeirohedron in 3-dimensional hyperbolic space. Its faces are precisely the octagonal faces of the cyclotruncated cubic-tetrahedral honeycomb.

Bibliography[edit | edit source]

  • Garner, Cyril (1967), "Regular skew polyhedra in hyperbolic three-space" (PDF), Canadian Journal of Mathematics, 19, doi:10.4153/CJM-1967-106-9