❴8,8/3∣3❵

From Polytope Wiki
Jump to navigation Jump to search
{8,8/3∣3}
Rank3
Dimension4
TypeRegular
Notation
Schläfli symbol{8,8/3∣3}
Elements
Faces144 octagons
Edges576
Vertices144
Vertex figureSkew octagram, edge length
Holes384 triangles
Measures (edge length 1)
Circumradius
Related polytopes
ArmySpic
RegimentSpic
Dual{8/3,8∣3}
φ 2 Octahedron
φ 3 {4,8∣3}
Conjugates{8/3,8∣3}
Abstract & topological properties
Flag count2304
Euler characteristic-288
Schläfli type{8,8}
OrientableYes
Genus145
Properties
SymmetryF4×2, order 2304
ConvexNo
Dimension vector(3,2,3)
Relations between polyhedra with planar faces and F4×2 symmetry. represents the dual, represents third-order facetting, and represents the conjugate.

{8,8/3∣3} is a regular skew polyhedron in 4-dimensional Euclidean space. It consists of exactly the octagonal faces of the small distetracontoctachoron.