Chiliaicositetraxennon

From Polytope Wiki
(Redirected from 10-orthoplex)
Jump to navigation Jump to search
Chiliaicositetraxennon
10-orthoplex.svg
Rank10
TypeRegular
SpaceSpherical
Notation
Bowers style acronymKa
Coxeter diagramo4o3o3o3o3o3o3o3o3x
(CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png)
Schläfli symbol{3,3,3,3,3,3,3,3,4}
Elements
Xenna1024 decayotta
Yotta5120 enneazetta
Zetta11520 octaexa
Exa15360 heptapeta
Peta13440 hexatera
Tera8064 pentachora
Cells3360 tetrahedra
Faces960 triangles
Edges180
Vertices20
Vertex figurePentacosidodecayotton, edge length 1
Measures (edge length 1)
Circumradius
Inradius
Hypervolume
Dixennal angle
Height
Central density1
Number of pieces1024
Level of complexity1
Related polytopes
ArmyKa
RegimentKa
DualDekeract
ConjugateNone
Abstract properties
Net count26941775019280
Euler characteristic0
Topological properties
OrientableYes
Properties
SymmetryB10, order 3715891200
ConvexYes
NatureTame

The chiliaicositetraxennon, or ka, also called the decacross or 10-orthoplex, is one of the 3 regular polyxenna. It has 1024 regular decayotta as facets, joining 4 to an octaexon peak and 512 to a vertex in a pentacosidodecayottal arrangement. It is the 10-dimensional orthoplex. It is also a triacontaditeron duotegum and square pentategum.

Vertex coordinates[edit | edit source]

The vertices of a regular chiliaicositetraxennon of edge length 1, centered at the origin, are given by all permutations of:

External links[edit | edit source]

  • Klitzing, Richard. "ka".