Chiliaicositetraxennon
(Redirected from 10-orthoplex)
Jump to navigation
Jump to search
Chiliaicositetraxennon | |
---|---|
Rank | 10 |
Type | Regular |
Space | Spherical |
Notation | |
Bowers style acronym | Ka |
Coxeter diagram | o4o3o3o3o3o3o3o3o3x ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Schläfli symbol | {3,3,3,3,3,3,3,3,4} |
Elements | |
Xenna | 1024 decayotta |
Yotta | 5120 enneazetta |
Zetta | 11520 octaexa |
Exa | 15360 heptapeta |
Peta | 13440 hexatera |
Tera | 8064 pentachora |
Cells | 3360 tetrahedra |
Faces | 960 triangles |
Edges | 180 |
Vertices | 20 |
Vertex figure | Pentacosidodecayotton, edge length 1 |
Measures (edge length 1) | |
Circumradius | |
Inradius | |
Hypervolume | |
Dixennal angle | |
Height | |
Central density | 1 |
Number of pieces | 1024 |
Level of complexity | 1 |
Related polytopes | |
Army | Ka |
Regiment | Ka |
Dual | Dekeract |
Conjugate | None |
Abstract properties | |
Net count | 26941775019280 |
Euler characteristic | 0 |
Topological properties | |
Orientable | Yes |
Properties | |
Symmetry | B10, order 3715891200 |
Convex | Yes |
Nature | Tame |
The chiliaicositetraxennon, or ka, also called the decacross or 10-orthoplex, is one of the 3 regular polyxenna. It has 1024 regular decayotta as facets, joining 4 to an octaexon peak and 512 to a vertex in a pentacosidodecayottal arrangement. It is the 10-dimensional orthoplex. It is also a triacontaditeron duotegum and square pentategum.
Vertex coordinates[edit | edit source]
The vertices of a regular chiliaicositetraxennon of edge length 1, centered at the origin, are given by all permutations of:
External links[edit | edit source]
- Klitzing, Richard. "ka".
- Wikipedia Contributors. "10-orthoplex".