Myriahexachiliatriacosioctacontatetratradakon

From Polytope Wiki
(Redirected from 14-orthoplex)
Jump to navigation Jump to search
Myriahexachiliatriacosioctacontatetratradakon
Rank14
TypeRegular
SpaceSpherical
Notation
Coxeter diagramo4o3o3o3o3o3o3o3o3o3o3o3o3x
Schläfli symbol{3,3,3,3,3,3,3,3,3,3,3,3,4}
Elements
Tradaka16384 tetradecadoka
Doka114688 tridecahenda
Henda372736 dodecadaka
Daka745472 hendecaxenna
Xenna1025024 decayotta
Yotta1025024 enneazetta
Zetta768768 octaexa
Exa439296 heptapeta
Peta192192 hexatera
Tera64064 pentachora
Cells16016 tetrahedra
Faces2912 triangles
Edges364
Vertices28
Vertex figureOctachiliahecatonenneacontadidokon, edge length 1
Measures (edge length 1)
Circumradius
Inradius
Hypervolume
Dihedral angle
Height
Central density1
Number of pieces16384
Level of complexity1
Related polytopes
Army*
Regiment*
DualTetradekeract
ConjugateNone
Abstract properties
Euler characteristic0
Topological properties
OrientableYes
Properties
SymmetryB14, order 1428329123020800
ConvexYes
NatureTame

The myriahexachiliatriacosioctacontatetratradakon, also called the tetradecacross or 14-orthoplex, is one of the 3 regular polytradaka. It has 16384 regular tetradecadoka as facets, joining 4 to a hendon and 8192 to a vertex in a octachiliahecatonenneacontadidokal arrangement. It is the 14-dimensional orthoplex. As such, it is a hecatonicosoctaexon duotegum and square heptategum.

Vertex coordinates[edit | edit source]

The vertices of a regular myriahexachiliatriacosioctacontatetratradakon of edge length 1, centered at the origin, are given by all permutations of: