14-simplex
Rank 14 Type Regular Notation Coxeter diagram x3o3o3o3o3o3o3o3o3o3o3o3o3o ( ) Schläfli symbol {3,3,3,3,3,3,3,3,3,3,3,3,3} Elements Tradaka 15 13-simplices Doka 105 12-simplices Henda 455 11-simplices Daka 1365 10-simplices Xenna 3003 9-simplices Yotta 5005 8-simplices Zetta 6435 7-simplices Exa 6435 6-simplices Peta 5005 hexatera Tera 3003 pentachora Cells 1365 tetrahedra Faces 455 triangles Edges 105 Vertices 15 Vertex figure 13-simplex , edge length 1Measures (edge length 1) Circumradius
105
15
≈
0.68313
{\displaystyle {\frac {\sqrt {105}}{15}}\approx 0.68313}
Inradius
105
210
≈
0.048795
{\displaystyle {\frac {\sqrt {105}}{210}}\approx 0.048795}
Hypervolume
15
11158821273600
≈
3.4708
×
10
−
13
{\displaystyle {\frac {\sqrt {15}}{11158821273600}}\approx 3.4708\times 10^{-13}}
Dihedral angle
arccos
(
1
14
)
≈
85.90396
∘
{\displaystyle \arccos \left({\frac {1}{14}}\right)\approx 85.90396^{\circ }}
Height
105
14
≈
0.73193
{\displaystyle {\frac {\sqrt {105}}{14}}\approx 0.73193}
Central density 1 Number of external pieces 15 Level of complexity 1 Related polytopes Army 14-simplex Regiment 14-simplex Dual 14-simplex Conjugate None Abstract & topological properties Flag count1307674368000 Euler characteristic 0 Orientable Yes Properties Symmetry A14 , order 1307674368000Flag orbits 1 Convex Yes Nature Tame
The 14-simplex (also called the pentadecatradakon ) is the simplest possible non-degenerate 14-polytope . The full symmetry version has 15 regular 13-simplices as facets, joining 3 to a facet and 14 to a vertex, and is regular .
The vertices of a regular 14-simplex of edge length 1, centered at the origin, are given by:
(
±
1
2
,
−
3
6
,
−
6
12
,
−
10
20
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(\pm {\frac {1}{2}},\,-{\frac {\sqrt {3}}{6}},\,-{\frac {\sqrt {6}}{12}},\,-{\frac {\sqrt {10}}{20}},\,-{\frac {\sqrt {15}}{30}},\,-{\frac {\sqrt {21}}{42}},\,-{\frac {\sqrt {7}}{28}},\,-{\frac {1}{12}},\,-{\frac {\sqrt {5}}{30}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}},\,-{\frac {\sqrt {105}}{210}}\right)}
,
(
0
,
3
3
,
−
6
12
,
−
10
20
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,{\frac {\sqrt {3}}{3}},\,-{\frac {\sqrt {6}}{12}},\,-{\frac {\sqrt {10}}{20}},\,-{\frac {\sqrt {15}}{30}},\,-{\frac {\sqrt {21}}{42}},\,-{\frac {\sqrt {7}}{28}},\,-{\frac {1}{12}},\,-{\frac {\sqrt {5}}{30}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}},\,-{\frac {\sqrt {105}}{210}}\right)}
,
(
0
,
0
,
6
4
,
−
10
20
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,{\frac {\sqrt {6}}{4}},\,-{\frac {\sqrt {10}}{20}},\,-{\frac {\sqrt {15}}{30}},\,-{\frac {\sqrt {21}}{42}},\,-{\frac {\sqrt {7}}{28}},\,-{\frac {1}{12}},\,-{\frac {\sqrt {5}}{30}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}},\,-{\frac {\sqrt {105}}{210}}\right)}
,
(
0
,
0
,
0
,
10
5
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,{\frac {\sqrt {10}}{5}},\,-{\frac {\sqrt {15}}{30}},\,-{\frac {\sqrt {21}}{42}},\,-{\frac {\sqrt {7}}{28}},\,-{\frac {1}{12}},\,-{\frac {\sqrt {5}}{30}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}},\,-{\frac {\sqrt {105}}{210}}\right)}
,
(
0
,
0
,
0
,
0
,
15
6
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,{\frac {\sqrt {15}}{6}},\,-{\frac {\sqrt {21}}{42}},\,-{\frac {\sqrt {7}}{28}},\,-{\frac {1}{12}},\,-{\frac {\sqrt {5}}{30}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}},\,-{\frac {\sqrt {105}}{210}}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
21
7
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,{\frac {\sqrt {21}}{7}},\,-{\frac {\sqrt {7}}{28}},\,-{\frac {1}{12}},\,-{\frac {\sqrt {5}}{30}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}},\,-{\frac {\sqrt {105}}{210}}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
7
4
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,{\frac {\sqrt {7}}{4}},\,-{\frac {1}{12}},\,-{\frac {\sqrt {5}}{30}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}},\,-{\frac {\sqrt {105}}{210}}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
2
3
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,{\frac {2}{3}},\,-{\frac {\sqrt {5}}{30}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}},\,-{\frac {\sqrt {105}}{210}}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
3
5
10
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,{\frac {3{\sqrt {5}}}{10}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}},\,-{\frac {\sqrt {105}}{210}}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
55
11
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,{\frac {\sqrt {55}}{11}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}},\,-{\frac {\sqrt {105}}{210}}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
66
12
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,{\frac {\sqrt {66}}{12}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}},\,-{\frac {\sqrt {105}}{210}}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
78
13
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,{\frac {\sqrt {78}}{13}},\,-{\frac {\sqrt {91}}{182}},\,-{\frac {\sqrt {105}}{210}}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
91
14
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,{\frac {\sqrt {91}}{14}},\,-{\frac {\sqrt {105}}{210}}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
105
15
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,{\frac {\sqrt {105}}{15}}\right)}
.
Much simpler coordinates can be given in 15 dimensions , as all permutations of:
(
2
2
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
)
{\displaystyle \left({\frac {\sqrt {2}}{2}},\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0\right)}
.