Hexamyriapentachiliapentacositriacontahexapedakon
(Redirected from 16-orthoplex)
Jump to navigation
Jump to search
Hexamyriapentachiliapentacositriacontahexapedakon | |
---|---|
Rank | 16 |
Type | Regular |
Space | Spherical |
Notation | |
Coxeter diagram | o4o3o3o3o3o3o3o3o3o3o3o3o3o3o3x |
Schläfli symbol | {3,3,3,3,3,3,3,3,3,3,3,3,3,3,4} |
Elements | |
Pedaka | 65536 hexadecatedaka |
Tedaka | 524288 pentadecatradaka |
Tradaka | 1966080 tetradecadoka |
Doka | 4587520 tridecahenda |
Henda | 7454720 dodecadaka |
Daka | 8945664 hendecaxenna |
Xenna | 8200192 decayotta |
Yotta | 5857280 enneazetta |
Zetta | 3294720 octaexa |
Exa | 1464320 heptapeta |
Peta | 512512 hexatera |
Tera | 139776 pentachora |
Cells | 29120 tetrahedra |
Faces | 4480 triangles |
Edges | 480 |
Vertices | 32 |
Vertex figure | Trismyriadischiliaheptacosihexacontoctatedakon, edge length 1 |
Measures (edge length 1) | |
Circumradius | |
Inradius | |
Hypervolume | |
Dihedral angle | |
Height | |
Central density | 1 |
Number of pieces | 65536 |
Level of complexity | 1 |
Related polytopes | |
Army | * |
Regiment | * |
Dual | Hexadekeract |
Conjugate | None |
Abstract properties | |
Euler characteristic | 0 |
Topological properties | |
Orientable | Yes |
Properties | |
Symmetry | B16, order 1371195958099968000 |
Convex | Yes |
Nature | Tame |
The hexamyriapentachiliapentacositriacontahexapedakon, also called the hexadecacross or 16-orthoplex, is one of the 3 regular polypedaka. It has 65536 regular hexadecatedaka as facets, joining 4 to a tradakon and 32768 to a vertex in a trismyriadischiliaheptacosihexacontoctatedakal arrangement. It is the 16-dimensional orthoplex. As such it is a diacosipentacontahexazetton duotegum, hexadecachoron tetrategum, and square octategum.
Vertex coordinates[edit | edit source]
The vertices of a regular hexamyriapentachiliapentacositriacontahexapedakon of edge length 1, centered at the origin, are given by all permutations of: