Dischiliahecatonhexaconta-myriaheptachiliadiacosioctaconta-zetton

From Polytope Wiki
(Redirected from 2160-17280-zetton)
Jump to navigation Jump to search
Dischiliahecatonhexaconta-myriaheptachiliadiacosioctaconta-zetton
4 21 t0 E8.svg
Rank8
TypeUniform
SpaceSpherical
Notation
Bowers style acronymFy
Coxeter diagramo3o3o3o *c3o3o3o3x (CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png)
Elements
Zetta17280 octaexa, 2160 hecatonicosoctaexa
Exa69120+138240 heptapeta
Peta483840 hexatera
Tera483840 pentachora
Cells241920 tetrahedra
Faces60480 triangles
Edges6720
Vertices240
Vertex figureHecatonicosihexapentacosiheptacontahexaexon
Measures (edge length 1)
Circumradius1
Hypervolume
Dizettal anglesoca–hop-zee:
 zee–hop-zee:
Central density1
Number of pieces19440
Level of complexity3
Related polytopes
ArmyFy
RegimentFy
DualSemistellatotriacontaditeri-icosiheptapeto-pentacontoctaexic diacositetracontazetton
ConjugateNone
Abstract properties
Euler characteristic0
Topological properties
OrientableYes
Properties
SymmetryE8, order 696729600
ConvexYes
NatureTame

The dischiliahecatonhexaconta-myriaheptachiliadiacosioctaconta-zetton, abbreviated as 2160-17280-zetton, also known as fy, the E8 polytope, or the 421 polytope, is a unifrom polyzetton. It consists of 2160 hecatonicosoctaexa and 17280 octaexa as facets, with 126 hecatonicosoctaexa and 576 octaexa as facets forming a hecatonicosihexapentacosiheptacontahexaexon as the vertex figure.

The dischiliahecatonhexaconta-myriaheptachiliadiacosioctaconta-zetton contains the vertices and edges of the birectified enneazetton, small exioctadecazetton, demiocteract, rectified diacosipentacontahexazetton, hecatonicosihexapentacosiheptacontahexaexic prism, triangular-icosiheptaheptacontidipetic duoprism, pentachoric-rectified pentachoric duoprism, tetrahedral-demipenteractic duoprism, hexadecachoric duoprism, octahedral-triacontiditeric duoprism, square-hexacontatetrapetic duoprism, rectified octaexic prism, and triangular-hexateric duoprismatic prism.

Vertex coordinates[edit | edit source]

Coordinates for the vertices of a dischiliahecatonhexaconta-myriaheptachiliadiacosioctaconta-zetton with edge length 1 are given by all permutations and sign changes of

as well as all even sign changes of

Representations[edit | edit source]

A dischiliahecatonhexaconta-myriaheptachiliadiacosioctaconta-zetton has the following Coxeter diagrams:

  • o3o3o3o *c3o3o3o3x (full symmetry)
  • ooxoo3ooooo3ooooo3ooooo *c3ooooo3ooooo3oxoxo&#xt (E7 axial, vertex-first)
  • oxooo3ooooo3oooxo *b3ooooo3ooooo3ooxoo3xooox&#xt (D7 axial, hecatonicosoctaexon-first)
  • xo3oo3oo *b3oo3oo3oo3ox3oo&#zx (D8 subsymmetry)
  • oxo3ooo3xoo3ooo3ooo3oox3ooo3oxo&#zx (A8 subsymmetry)
  • xooxooo3oooooxo3ooxoooo3ooooooo3ooooxoo3oxooooo3oooxoox&#xt (A7 axial, octaexon-first)
  • xoxooo3ooooxo3ooooox3xooxoo oxooox3ooxooo3oooxoo3oxooxo&#zx (A4×A4 subsymmetry)
  • ooxoo3xoooo3oooxo *b3oooox ooxoo3oxooo3oooxo *f3oooox&#zx (D4×D4 subsymmetry)
  • xoxo3xoox ooxo3oooo3oooo3oooo3ooox *e3oxoo&#zx (A6×A2 subsymmetry)

External links[edit | edit source]

  • Klitzing, Richard. "Fy".