Dischiliahecatonhexaconta-myriaheptachiliadiacosioctaconta-zetton
Dischiliahecatonhexaconta-myriaheptachiliadiacosioctaconta-zetton | |
---|---|
Rank | 8 |
Type | Uniform |
Space | Spherical |
Notation | |
Bowers style acronym | Fy |
Coxeter diagram | o3o3o3o *c3o3o3o3x (![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Elements | |
Zetta | 17280 octaexa, 2160 hecatonicosoctaexa |
Exa | 69120+138240 heptapeta |
Peta | 483840 hexatera |
Tera | 483840 pentachora |
Cells | 241920 tetrahedra |
Faces | 60480 triangles |
Edges | 6720 |
Vertices | 240 |
Vertex figure | Hecatonicosihexapentacosiheptacontahexaexon |
Measures (edge length 1) | |
Circumradius | 1 |
Hypervolume | |
Dizettal angles | oca–hop-zee: |
zee–hop-zee: | |
Central density | 1 |
Number of pieces | 19440 |
Level of complexity | 3 |
Related polytopes | |
Army | Fy |
Regiment | Fy |
Dual | Semistellatotriacontaditeri-icosiheptapeto-pentacontoctaexic diacositetracontazetton |
Conjugate | None |
Abstract properties | |
Euler characteristic | 0 |
Topological properties | |
Orientable | Yes |
Properties | |
Symmetry | E8, order 696729600 |
Convex | Yes |
Nature | Tame |
The dischiliahecatonhexaconta-myriaheptachiliadiacosioctaconta-zetton, abbreviated as 2160-17280-zetton, also known as fy, the E8 polytope, or the 421 polytope, is a unifrom polyzetton. It consists of 2160 hecatonicosoctaexa and 17280 octaexa as facets, with 126 hecatonicosoctaexa and 576 octaexa as facets forming a hecatonicosihexapentacosiheptacontahexaexon as the vertex figure.
The dischiliahecatonhexaconta-myriaheptachiliadiacosioctaconta-zetton contains the vertices and edges of the birectified enneazetton, small exioctadecazetton, demiocteract, rectified diacosipentacontahexazetton, hecatonicosihexapentacosiheptacontahexaexic prism, triangular-icosiheptaheptacontidipetic duoprism, pentachoric-rectified pentachoric duoprism, tetrahedral-demipenteractic duoprism, hexadecachoric duoprism, octahedral-triacontiditeric duoprism, square-hexacontatetrapetic duoprism, rectified octaexic prism, and triangular-hexateric duoprismatic prism.
Vertex coordinates[edit | edit source]
Coordinates for the vertices of a dischiliahecatonhexaconta-myriaheptachiliadiacosioctaconta-zetton with edge length 1 are given by all permutations and sign changes of
as well as all even sign changes of
Representations[edit | edit source]
A dischiliahecatonhexaconta-myriaheptachiliadiacosioctaconta-zetton has the following Coxeter diagrams:
- o3o3o3o *c3o3o3o3x (full symmetry)
- ooxoo3ooooo3ooooo3ooooo *c3ooooo3ooooo3oxoxo&#xt (E7 axial, vertex-first)
- oxooo3ooooo3oooxo *b3ooooo3ooooo3ooxoo3xooox&#xt (D7 axial, hecatonicosoctaexon-first)
- xo3oo3oo *b3oo3oo3oo3ox3oo&#zx (D8 subsymmetry)
- oxo3ooo3xoo3ooo3ooo3oox3ooo3oxo&#zx (A8 subsymmetry)
- xooxooo3oooooxo3ooxoooo3ooooooo3ooooxoo3oxooooo3oooxoox&#xt (A7 axial, octaexon-first)
- xoxooo3ooooxo3ooooox3xooxoo oxooox3ooxooo3oooxoo3oxooxo&#zx (A4×A4 subsymmetry)
- ooxoo3xoooo3oooxo *b3oooox ooxoo3oxooo3oooxo *f3oooox&#zx (D4×D4 subsymmetry)
- xoxo3xoox ooxo3oooo3oooo3oooo3ooox *e3oxoo&#zx (A6×A2 subsymmetry)
External links[edit | edit source]
- Klitzing, Richard. "Fy".
- Wikipedia Contributors. "421 polytope".