Icositetrachoron

From Polytope Wiki
(Redirected from 24 cell)
Jump to navigation Jump to search
Icositetrachoron
Schlegel wireframe 24-cell.png
Rank4
TypeRegular
SpaceSpherical
Bowers style acronymIco
Info
Coxeter diagramx3o4o3o
Schläfli symbol{3,4,3}
SymmetryF4, order 1152
ArmyIco
RegimentIco
Elements
Vertex figureCube, edge length 1
Cells24 octahedra
Faces96 triangles
Edges96
Vertices24
Measures (edge length 1)
Circumradius1
Edge radius
Face radius
Inradius
Hypervolume2
Dichoral angle120°
Central density1
Euler characteristic0
Number of pieces24
Level of complexity1
Related polytopes
DualIcositetrachoron
ConjugateIcositetrachoron
Properties
ConvexYes
OrientableYes
NatureTame

The icositetrachoron, or ico, also commonly called the 24-cell, is one of the 6 convex regular polychora. It has 24 octahedra as cells, joining 3 to an edge and 6 to a vertex in a cubical arrangement. It is notable for being the only regular self-dual convex spherical polytope that is neither a polygon nor a simplex.

The icositetrachoron is the third in a series of isogonal and isochoric tetrahedral swirlchora, the first in a series of isogonal octahedral swirlchora, and the first in a series of isochoric cubic swirlchora.

It is also one of the three regular polychora that can tile 4D space in the icositetrachoric tetracomb and is notable for having the same circumradius as its edge length.

It can be constructed by attaching 8 cubic pyramids to the cells of a tesseract, or by rectifying the regular hexadecachoron.

Cross-sections[edit | edit source]

Ico sections Bowers.png

Vertex coordinates[edit | edit source]

The vertices of an icositetrachoron of edge length 1, centered at the origin, are given by all permutations of:

The dual icositetrachoron to this one has vertices given by all permutations of:

This shows that a unit tesseract, as well as a hexadecachoron of edge length , can be inscribed into the icositetrachoron.

Surtope Angles[edit | edit source]

This is the fraction of solid space around a given surtope, against all-space

  • A2 :40.00.00 = 120° 1/3 Dichoral angle or Margin angle
  • A3 :30.00.00 = 180°E 1/4 Edge angle
  • A4 :15.00.00 1/8 Vertex-angle = face of tesseract from centre.

Representations[edit | edit source]

An icositetrachoron has the following Coxeter diagrams:

  • x3o4o3o (full symmetry)
  • o4o3x3o (BC4 symmetry, rectified hexadecachoron)
  • o3x3o *b3o (D4 symmetry, rectified demitesseract)
  • ooo4oxo3xox&#xt (BC3 axial, octahedron-first)
  • oxo3xox3oxo&#xt (A3 axial, octahedron-first)
  • oxoxo4ooooo3ooqoo&#xt (BC4 axial, vertex-first)
  • ox(uoo)xo ox(ouo)xo ox(oou)xo&#xt (A1×A1×A1 axial, vertex-first)
  • ox(uo)xo ox(oq)xo4oo(oo)oo&#xt (BC2×A1 axial, vertex-first)
  • ox4oo3oo3qo&#zx (BC4 axial, dual of rectified hexadecachoron)
  • qoo3ooo3oqo &b3ooq&#zx (D4 symmetry, hull of 3 hexadecachora)
  • qo oo4ox3xo&#zx (CB3×A1 symmetry)
  • oxo4ooq oxo4qoo&#zx (BC2×BC2 symmetry)
  • xxo3xox oqo3ooq&#zx (A2×A2 symmetry)
  • uooox ouoox oouox oooux&#zx (A1×A1×A1×A1 symmetry)
  • (qo)(qo)(qo) (ox)(xo)(ox)4(oo)(oq)(oo)&#xt (BC2×A1 axial, octahedron first)
  • uoox ouox ooqx4oooo&#zx (BC2×A1×A1 symmetry)
  • oqoqo xoxxo3oxxox&#xt (BC2×A1 axial, triangle-first)
  • xoxuxox oqooqoo3ooqooqo&#xt (A2×A1 axial edge-first)

Variations[edit | edit source]

The icositetrachoron has a wide variety of colorings that remain isogonal or isochoric, most of which do not have variations in the measures however:

  • Rectified hexadecachoron - tesseractic symmetry, 16 octahedra have tetrahedral symmetry
  • Joined hexadecachoron - dual to above, cells are square tegums
  • Rectified demitesseract - 3 sets of 8 tetratetrahedra
  • Joined demitesseract - cells are rhombic tegums
  • Hexafold tetraswirlchoron/Tetraswirlic icositetrachoron - Tetrahedral swirlprism symmetry, 24 trigonal antiprism cells
  • Tetrafold octaswirlchoron - with isogonal cube swirlprism symmetry
  • Hexaswirlic icositetrachoron - 24 identical cells, again with square tegmatic symmetry

Related polychora[edit | edit source]

The regiment of the icositetrachoron contains a total of 14 members plus one compound (the great icositetrachoron). Of the 13 other members, the icositetrahemicositetrachoron has F4+ symmetry, 6 (including the octahemihexadecachoron) have BC4 symmetry, and the last 6 (including the rectified tesseractihemioctachoron) have D4 symmetry.

It is possible to diminish an icositetrachoron by cutting off cubic pyramids, each of which deletes one vertex. If the vertices corresponding to an inscribed hexadecachoron are removed, the result is the regular tesseract.

The unit icositetrachoron can be seen as the convex hull of a unit tesseract and a hexadecachoron of edge length .

The icositetrachoron can be cut in half to produce two identical octahedra atop cuboctahedra.

Many other CRF polychora can be obtained as various vertex subsets of the icositetrachoron. Among the more interesting is the fact that an icositetrachoron can be decomposed into 6 triangular antiwedges.

o3o4o3o truncations
Name OBSA Schläfli symbol CD diagram Picture
Icositetrachoron ico {3,4,3} CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Schlegel wireframe 24-cell.png
Truncated icositetrachoron tico t{3,4,3} CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Schlegel half-solid truncated 24-cell.png
Rectified icositetrachoron rico r{3,4,3} CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Schlegel half-solid cantellated 16-cell.png
Tetracontoctachoron cont 2t{3,4,3} CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Bitruncated 24-cell Schlegel halfsolid.png
Rectified icositetrachoron rico r{3,4,3} CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Schlegel half-solid cantellated 16-cell.png
Truncated icositetrachoron tico t{3,4,3} CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Schlegel half-solid truncated 24-cell.png
Icositetrachoron ico {3,4,3} CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Schlegel wireframe 24-cell.png
Small rhombated icositetrachoron srico rr{3,4,3} CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Cantel 24cell1.png
Great rhombated icositetrachoron grico tr{3,4,3} CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Cantitruncated 24-cell schlegel halfsolid.png
Small rhombated icositetrachoron srico rr{3,4,3} CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Cantel 24cell1.png
Great rhombated icositetrachoron grico tr{3,4,3} CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Cantitruncated 24-cell schlegel halfsolid.png
Small prismatotetracontoctachoron spic t0,3{3,4,3} CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Runcinated 24-cell Schlegel halfsolid.png
Prismatorhombated icositetrachoron prico t0,1,3{3,4,3} CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Prico.png
Prismatorhombated icositetrachoron prico t0,1,3{3,4,3} CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Prico.png
Great prismatotetracontoctachoron gippic t0,1,2,3{3,4,3} CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Gippic.png
Snub disicositetrachoron sadi CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Schlegel half-solid alternated cantitruncated 16-cell.png
o4o3o3o truncations
Name OBSA Schläfli symbol CD diagram Picture
Tesseract tes {4,3,3} CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Schlegel wireframe 8-cell.png
Truncated tesseract tat t{4,3,3} CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Schlegel half-solid truncated tesseract.png
Rectified tesseract rit r{4,3,3} CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Schlegel half-solid rectified 8-cell.png
Tesseractihexadecachoron tah 2t{4,3,3} CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Schlegel half-solid bitruncated 8-cell.png
Rectified hexadecachoron = Icositetrachoron ico r{3,3,4} CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Schlegel half-solid rectified 16-cell.png
Truncated hexadecachoron thex t{3,3,4} CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Schlegel half-solid truncated 16-cell.png
Hexadecachoron hex {3,3,4} CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Schlegel wireframe 16-cell.png
Small rhombated tesseract srit rr{4,3,3} CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Schlegel half-solid cantellated 8-cell.png
Great rhombated tesseract grit tr{4,3,3} CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Schlegel half-solid cantitruncated 8-cell.png
Small rhombated hexadecachoron = Rectified icositetrachoron rico rr{3,3,4} CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Schlegel half-solid cantellated 16-cell.png
Great rhombated hexadecachoron = Truncated icositetrachoron tico tr{3,3,4} CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Schlegel half-solid cantitruncated 16-cell.png
Small disprismatotesseractihexadecachoron sidpith t0,3{4,3,3} CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Schlegel half-solid runcinated 8-cell.png
Prismatorhombated hexadecachoron proh t0,1,3{4,3,3} CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Schlegel half-solid runcitruncated 8-cell.png
Prismatorhombated tesseract prit t0,1,3{3,3,4} CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Schlegel half-solid runcitruncated 16-cell.png
Great disprismatotesseractihexadecachoron gidpith t0,1,2,3{4,3,3} CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Schlegel half-solid omnitruncated 8-cell.png

Isogonal derivatives[edit | edit source]

Substitution by vertices of these following elements will produce these convex isogonal polychora:

External links[edit | edit source]

  • Klitzing, Richard. "Ico".