Octaexon

From Polytope Wiki
(Redirected from 7-simplex)
Jump to navigation Jump to search
Octaexon
7-simplex t0.svg
Rank7
TypeRegular
SpaceSpherical
Notation
Bowers style acronymOca
Coxeter diagramx3o3o3o3o3o3o (CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png)
Schläfli symbol{3,3,3,3,3,3}
Tapertopic notation16
Elements
Exa8 heptapeta
Peta28 hexatera
Tera56 pentachora
Cells70 tetrahedra
Faces56 triangles
Edges28
Vertices8
Vertex figureHeptapeton, edge length 1
Measures (edge length 1)
Circumradius
Edge radius
Face radius
Cell radius
Teron radius
Peton radius
Inradius
Hypervolume
Diexal angle
HeightsPoint atop hop:
 Dyad atop perp hix:
 Trig atop perp pen:
 Tet atop perp tet:
Central density1
Number of pieces8
Level of complexity1
Related polytopes
ArmyOca
RegimentOca
DualOctaexon
ConjugateNone
Abstract properties
Flag count40320
Euler characteristic2
Topological properties
OrientableYes
Properties
SymmetryA7, order 40320
ConvexYes
NatureTame

The octaexon, or oca, also commonly called the 7-simplex, is the simplest possible non-degenerate polyexon. The full symmetry version has 8 regular heptapeta as facets, joining 3 to a pentachoron peak and 7 to a vertex, and is one of the 3 regular polyexa. It is the 7-dimensional simplex. It is also a pyramid based on the heptapeton.

A regular octaexon of edge length 2 can be inscribed in the unit hepteract.[1] The next largest simplex that can be inscribed in a hypercube is the dodecadakon.[2]

Vertex coordinates[edit | edit source]

The vertices of a regular octaexon of edge length 1, centered at the origin, are given by:

Much simpler sets of coordinates can be found by inscribing the octaexon into the hepteract. One such set is given by:[3]

Even simpler coordinates can be given in eight dimensions, as all permutations of:

Representations[edit | edit source]

An octaexon has the following Coxeter diagrams:

  • x3o3o3o3o3o3o (full symmetry)
  • ox3oo3oo3oo3oo3oo&#x (A6 axial, heptapetal pyramid)
  • xo ox3oo3oo3oo3oo&#x (A5×A1 axial, hexateral scalene)
  • xo3oo ox3oo3oo&#x (A4×A2 axial, pentachoric tettene)
  • xo3oo3oo ox3oo3oo&#x (A3×A3 axial, tetrahedral disphenoid)
  • oxo3ooo oox3ooo3ooo&#x (A3×A2 symmetry, tetrahedral tettene pyramid)
  • oxo xoo3ooo ooxooo&#x (A2×A2×A1 symmetry, trigonal disphenoid scalene)
  • xoo oox oxo3ooo3ooo&#x (A3×A1×A1 symmetry, tetrahedral scalenic scalene)
  • oxoo3oooo ooxo3oooo&#x (A2×A2 symmetry, trigonal pyramidal disphenoid)

References[edit | edit source]

  1. Adams, Joshua; Zvengrowski, Peter; Laird, Philip (2003). "Vertex Embeddings of Regular Polytopes". Expositiones Mathematicae.
  2. Sloane, N. J. A. (ed.). "Sequence A019442". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. Mecejide (2020). "Coordinates of Oca".

External links[edit | edit source]

  • Klitzing, Richard. "oca".