Pentacosidodecayotton

From Polytope Wiki
(Redirected from 9-orthoplex)
Jump to navigation Jump to search
Pentacosidodecayotton
9-orthoplex.svg
Rank9
TypeRegular
SpaceSpherical
Notation
Bowers style acronymVee
Coxeter diagramo4o3o3o3o3o3o3o3x (CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png)
Schläfli symbol{3,3,3,3,3,3,3,4}
Bracket notation<IIIIIIIII>
Elements
Yotta512 enneazetta
Zetta2304 octaexa
Exa4608 heptapeta
Peta5376 hexatera
Tera4032 pentachora
Cells2016 tetrahedra
Faces672 triangles
Edges144
Vertices18
Vertex figureDiacosipentacontahexazetton, edge length 1
Measures (edge length 1)
Circumradius
Inradius
Hypervolume
Diyottal angle
Height
Central density1
Number of pieces512
Level of complexity1
Related polytopes
ArmyVee
RegimentVee
DualEnneract
ConjugateNone
Abstract properties
Net count248639631948
Euler characteristic2
Topological properties
OrientableYes
Properties
SymmetryB9, order 185794560
ConvexYes
NatureTame

The pentacosidodecayotton, or vee, also called the enneacross or 9-orthoplex, is one of the 3 regular polyyotta. It has 512 regular enneazetta as facets, joining 4 to a heptapeton peak and 256 to a vertex in a diacosipentacontahexazettal arrangement. It is the 9-dimensional orthoplex. It is also an octahedron triotegum.

Vertex coordinates[edit | edit source]

The vertices of a regular pentacosidodecayotton of edge length 1, centered at the origin, are given by all permutations of:

External links[edit | edit source]

  • Klitzing, Richard. "vee".