Apeirogonal tiling
Jump to navigation
Jump to search
Apeirogonal tiling | |
---|---|
Rank | 3 |
Type | Regular, paracompact |
Space | Hyperbolic |
Notation | |
Bowers style acronym | Azat |
Coxeter diagram | x∞o3o (![]() ![]() ![]() ![]() ![]() |
Schläfli symbol | {∞,3} |
Elements | |
Faces | 6N Apeirogons |
Edges | 3NM |
Vertices | 2NM |
Vertex figure | Triangle, edge length 2 |
Measures (edge length 1) | |
Circumradius | |
Related polytopes | |
Army | Azat |
Regiment | Azat |
Dual | Order-∞ triangular tiling |
Topological properties | |
Surface | Sphere |
Orientable | Yes |
Genus | 0 |
Properties | |
Symmetry | [∞,3] |
Convex | Yes |
The order-3 apeirogonal tiling, or just apeirogonal tiling or azat, is a paracompact regular tiling of the hyperbolic plane. 3 apeirogons join at each vertex.
It can be formed by truncating the order-∞ apeirogonal tiling.
Representations[edit | edit source]
The apeirogonal tiling has the following Coxeter diagrams:
- x∞o3o (full symmetry)
- x∞x∞o (as truncated order-∞ apeirogonal tiling)
- x∞x∞x∞*a (three types of faces) (
)
Related polytopes[edit | edit source]
Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|
Apeirogonal tiling | azat | {∞,3} | ![]() ![]() ![]() ![]() ![]() |
|
Truncated apeirogonal tiling | tazat | t{∞,3} | ![]() ![]() ![]() ![]() ![]() |
|
Triapeirogonal tiling | tazt | r{∞,3} | ![]() ![]() ![]() ![]() ![]() |
|
Truncated order-∞ triangular tiling | taztrat | t{3,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Order-∞ triangular tiling | aztrat | {3,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Small rhombitriapeirogonal tiling | srotazt | rr{∞,3} | ![]() ![]() ![]() ![]() ![]() |
|
Great rhombitriapeirogonal tiling | grotazt | tr{∞,3} | ![]() ![]() ![]() ![]() ![]() |
|
Snub triapeirogonal tiling | sr{∞,3} | ![]() ![]() ![]() ![]() ![]() |
External links[edit | edit source]
- Klitzing, Richard. "azat".
- Wikipedia Contributors. "Order-3 apeirogonal tiling".