Apeirogonal tiling

From Polytope Wiki
Jump to navigation Jump to search
Apeirogonal tiling
Rank3
TypeRegular, paracompact
SpaceHyperbolic
Notation
Bowers style acronymAzat
Coxeter diagramx∞o3o ()
Schläfli symbol{∞,3}
Elements
Faces6N apeirogons
Edges3NM
Vertices2NM
Vertex figureTriangle, edge length 2
Measures (edge length 1)
Circumradius
Related polytopes
ArmyAzat
RegimentAzat
DualOrder-∞ triangular tiling
Abstract & topological properties
SurfaceSphere
OrientableYes
Genus0
Properties
Symmetry[∞,3]
ConvexYes


The order-3 apeirogonal tiling, or just apeirogonal tiling or azat, is a paracompact regular tiling of the hyperbolic plane. 3 apeirogons join at each vertex.

It can be formed by truncating the order-∞ apeirogonal tiling.

Representations[edit | edit source]

The apeirogonal tiling has the following Coxeter diagrams:

External links[edit | edit source]