Cubic symmetry
(Redirected from B3)
Jump to navigation
Jump to search
Cubic symmetry | |
---|---|
![]() | |
Rank | 3 |
Space | Spherical |
Order | 48 |
Info | |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() |
Elements | |
Axes | 3 × BC2×A1, 4 × (G2×A1)/2, 6 × K3 |
Related polytopes | |
Omnitruncate | Great rhombicuboctahedron |
Cubic symmetry, also known as octahedral symmetry and notated B3 or BC3, is a 3D spherical Coxeter group. It is the symmetry group of the cube and octahedron.
Subgroups[edit | edit source]
- B3/2 (maximal)
- B3+ (maximal)
- A3 (maximal)
- A3+
- (G2×A1)/2 (maximal)
- (G2+×A1)/2
- B2×A1 (maximal)
- (B2×A1)/2
- (B2×A1)+
- B2×I
- B2+×A1
- (B2+×A1)/2
- B2+×I
- (A2×A1)+
- A2×I
- A2+×I
- K3
- K3+
- K2×I
- K2+×A1
- K2+×I
- ±(I×I×I)
- A1×I×I
- I×I×I
Convex polytopes with B3 symmetry[edit | edit source]
- Cube (regular)/Octahedron (regular)
- Cuboctahedron (isogonal)/Rhombic dodecahedron (isotopic)
- Truncated cube (isogonal)/Triakis octahedron (isotopic)
- Truncated octahedron (isogonal)/Tetrakis hexahedron (isotopic)
- Small rhombicuboctahedron (isogonal)/Deltoidal icositetrahedron (isotopic)
- Great rhombicuboctahedron (isogonal)/Disdyakis dodecahedron (isotopic)
Wythoffians with B3 symmetry[edit | edit source]
Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|
Cube | cube | {4,3} | x4o3o | |
Truncated cube | tic | t{4,3} | x4x3o | |
Cuboctahedron | co | r{4,3} | o4x3o | |
Truncated octahedron | toe | t{3,4} | o4x3x | |
Octahedron | oct | {3,4} | o4o3x | |
Small rhombicuboctahedron | sirco | rr{4,3} | x4o3x | |
Great rhombicuboctahedron | girco | tr{4,3} | x4x3x | |
Snub cube | snic | sr{4,3} | s4s3s |
Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|
Cube | cube | {4/3,3} | x4/3o3o (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Quasitruncated hexahedron | quith | t{4/3,3} | x4/3x3o (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Cuboctahedron | co | r{3,4/3} | o4/3x3o (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Truncated octahedron | toe | t{3,4/3} | o4/3x3x (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Octahedron | oct | {3,4/3} | o4/3o3x (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Quasirhombicuboctahedron | querco | rr{3,4/3} | x4/3o3x (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Quasitruncated cuboctahedron | quitco | tr{3,4/3} | x4/3x3x (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
(degenerate, oct+6(4)) | o4/3o3ß (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|||
Icosahedron | ike | s{3,4/3} | o4/3s3s (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Name | OBSA | CD diagram | Picture |
---|---|---|---|
(degenerate, double cover of cube) | x4/3o3o4*a (![]() ![]() ![]() |
||
Great cubicuboctahedron | gocco | x4/3x3o4*a (![]() ![]() ![]() |
|
(degenerate, oct+6(4)) | o4/3x3o4*a (![]() ![]() ![]() |
||
(degenerate, double cover of cho) | o4/3x3x4*a (![]() ![]() ![]() |
||
(degenerate, oct+6(4)) | o4/3o3x4*a (![]() ![]() ![]() |
||
Small cubicuboctahedron | socco | x4/3o3x4*a (![]() ![]() ![]() |
|
Cuboctatruncated cuboctahedron | cotco | x4/3x3x4*a (![]() ![]() ![]() |