Cubic symmetry

From Polytope Wiki
(Redirected from B3)
Jump to navigation Jump to search
Cubic symmetry
Octahedral reflection domains.png
Rank3
SpaceSpherical
Order48
Info
Coxeter diagramCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Elements
Axes3 × BC2×A1, 4 × (G2×A1)/2, 6 × K3
Related polytopes
OmnitruncateGreat rhombicuboctahedron

Cubic symmetry, also known as octahedral symmetry and notated B3 or BC3, is a 3D spherical Coxeter group. It is the symmetry group of the cube and octahedron.

Subgroups[edit | edit source]

Convex polytopes with B3 symmetry[edit | edit source]

Wythoffians with B3 symmetry[edit | edit source]

o4o3o truncations
Name OBSA Schläfli symbol CD diagram Picture
Cube cube {4,3} x4o3o
Uniform polyhedron-43-t0.png
Truncated cube tic t{4,3} x4x3o
Uniform polyhedron-43-t01.png
Cuboctahedron co r{4,3} o4x3o
Uniform polyhedron-43-t1.png
Truncated octahedron toe t{3,4} o4x3x
Uniform polyhedron-43-t12.png
Octahedron oct {3,4} o4o3x
Uniform polyhedron-43-t2.png
Small rhombicuboctahedron sirco rr{4,3} x4o3x
Uniform polyhedron-43-t02.png
Great rhombicuboctahedron girco tr{4,3} x4x3x
Uniform polyhedron-43-t012.png
Snub cube snic sr{4,3} s4s3s
Uniform polyhedron-43-s012.png
o4/3o3o truncations
Name OBSA Schläfli symbol CD diagram Picture
Cube cube {4/3,3} x4/3o3o (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node.png)
Hexahedron.png
Quasitruncated hexahedron quith t{4/3,3} x4/3x3o (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node.png)
Stellated truncated hexahedron.png
Cuboctahedron co r{3,4/3} o4/3x3o (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node.png)
Cuboctahedron.png
Truncated octahedron toe t{3,4/3} o4/3x3x (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node 1.png)
Truncated octahedron.png
Octahedron oct {3,4/3} o4/3o3x (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node 1.png)
Octahedron.png
Quasirhombicuboctahedron querco rr{3,4/3} x4/3o3x (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node 1.png)
Uniform great rhombicuboctahedron.png
Quasitruncated cuboctahedron quitco tr{3,4/3} x4/3x3x (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node 1.png)
Great truncated cuboctahedron.png
(degenerate, oct+6(4)) o4/3o3ß (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node h1.png)
Octahedron.png
Icosahedron ike s{3,4/3} o4/3s3s (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node h.pngCDel 3.pngCDel node h.png)
Icosahedron.png
o4/3o3o4*a truncations
Name OBSA CD diagram Picture
(degenerate, double cover of cube) x4/3o3o4*a (CDel branch.pngCDel split2-q4.pngCDel node 1.png)
Hexahedron.png
Great cubicuboctahedron gocco x4/3x3o4*a (CDel branch 10r.pngCDel split2-q4.pngCDel node 1.png)
Great cubicuboctahedron.png
(degenerate, oct+6(4)) o4/3x3o4*a (CDel branch 10r.pngCDel split2-q4.pngCDel node.png)
Octahedron.png
(degenerate, double cover of cho) o4/3x3x4*a (CDel branch 11.pngCDel split2-q4.pngCDel node.png)
Cubohemioctahedron.png
(degenerate, oct+6(4)) o4/3o3x4*a (CDel branch 01r.pngCDel split2-q4.pngCDel node.png)
Octahedron.png
Small cubicuboctahedron socco x4/3o3x4*a (CDel branch 01r.pngCDel split2-q4.pngCDel node 1.png)
Small cubicuboctahedron.png
Cuboctatruncated cuboctahedron cotco x4/3x3x4*a (CDel branch 11.pngCDel split2-q4.pngCDel node 1.png)
Cubitruncated cuboctahedron.png