Biaugmented pentagonal prism
Biaugmented pentagonal prism | |
---|---|
Rank | 3 |
Type | CRF |
Notation | |
Bowers style acronym | Baupip |
Elements | |
Faces | |
Edges | 1+2+2+2+4+4+4+4 |
Vertices | 2+2+4+4 |
Vertex figures | 2 square, edge length 1 |
4+4 irregular tetragons, edge lengths 1, 1, √2, (1+√5)/2 | |
2 isosceles triangles, edge lengths (1+√5)/2, √2, √2 | |
Measures (edge length 1) | |
Volume | |
Dihedral angles | 3–4 join: |
3–5 join: | |
3–3 pyramidal: | |
4–4: 108° | |
4–5: 90° | |
Central density | 1 |
Number of external pieces | 13 |
Level of complexity | 23 |
Related polytopes | |
Army | Baupip |
Regiment | Baupip |
Dual | Paralaterobitruncated pentagonal tegum |
Conjugate | Biaugmented pentagrammic prism |
Abstract & topological properties | |
Flag count | 92 |
Euler characteristic | 2 |
Surface | Sphere |
Orientable | Yes |
Genus | 0 |
Properties | |
Symmetry | K2×I, order 4 |
Flag orbits | 23 |
Convex | Yes |
Nature | Tame |
The biaugmented pentagonal prism (OBSA: baupip) is one of the 92 Johnson solids (J53). It consists of 2+2+4 triangles, 1+2 squares, and 2 pentagons. It can be constructed by attaching square pyramids to two non-adjacent square faces of the pentagonal prism.
Vertex coordinates[edit | edit source]
A biaugmented pentagonal prism of edge length 1 has the following vertices:
- ,
- ,
- ,
- .
External links[edit | edit source]
- Klitzing, Richard. "baupip".
- Quickfur. "The Biaugmented Pentagonal Prism".
- Wikipedia contributors. "Biaugmented pentagonal prism".
- McCooey, David. "Biaugmented Pentagonal Prism"