Tetracontoctachoron

From Polytope Wiki
(Redirected from Cont)
Jump to navigation Jump to search
Tetracontoctachoron
Bitruncated 24-cell Schlegel halfsolid.png
Rank4
TypeUniform
SpaceSpherical
Notation
Bowers style acronymCont
Coxeter diagramo3x4x3o (CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png)
Elements
Cells48 truncated cubes
Faces192 triangles, 144 octagons
Edges576
Vertices288
Vertex figureTetragonal disphenoid, edge lengths 1 (base) and 2+2 (sides)
Edge figuretic 8 tic 8 tic 3
Measures (edge length 1)
Circumradius
Inradius
Hypervolume
Dichoral anglesTic–8–tic: 135°
 Tic–3–tic: 120°
Central density1
Number of external pieces48
Level of complexity3
Related polytopes
ArmyCont
RegimentCont
DualBitetracontoctachoron
ConjugateGreat tetracontoctachoron
Abstract & topological properties
Flag count6912
Euler characteristic0
OrientableYes
Properties
SymmetryF4×2, order 2304
ConvexYes
NatureTame

The tetracontoctachoron, or cont, also commonly called the 48-cell or bitruncated 24-cell, is a convex noble uniform polychoron that consists of 48 truncated cubes as cells. Four cells join at each vertex. It is the medial stage of the truncation series between a regular icositetrachoron and itself. Alternatively, it is also the stellation core of the compound of two opposite icositetrachora, the stellated tetracontoctachoron.

It is the second in an infinite family of isochoric cubic swirlchora (the cubiswirlic tetracontoctachoron) and the first in an infinite family of isochoric chiral rhombic dodecahedral swirlchora (the rhombidodecaswirlic tetracontoctachoron). Its cells form 6 rings of 8 truncated cubes.

The solid angle at the vertex is 73/288.

It can form a non-Wythoffian uniform hyperbolic tiling with 64 tetracontoctachora at each vertex with an octagonal duotegum as the vertex figure, called a tetracontoctachoric tetracomb.

Cross-sections[edit | edit source]

Cont sections Bowers.png Cont-slices.gif

Vertex coordinates[edit | edit source]

Coordinates for the vertices of a tetracontoctachoron of edge length 1 are all permutations of:

Representations[edit | edit source]

A tetracontoctachoron has the following Coxeter diagrams:

  • o3x4x3o (full symmetry)
  • xo4xw3oo3wx&#zx (BC4 symmetry)
  • xooxwUwxoox4xwwxoooxwwx3ooxwwxwwxoo&#xt (BC3 axial, cell-first)

Variations[edit | edit source]

The tetracontoctachoron has a semi-uniform variant with single symmetry called the icositetricositetrachoron, along with isochoric variants with swirlprismatic symmetry.

Related polychora[edit | edit source]

Uniform polychoron compounds composed of tetracontoctachora include:

o3o4o3o truncations
Name OBSA CD diagram Picture
Icositetrachoron ico CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Schlegel wireframe 24-cell.png
Truncated icositetrachoron tico CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Schlegel half-solid truncated 24-cell.png
Rectified icositetrachoron rico CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Schlegel half-solid cantellated 16-cell.png
Tetracontoctachoron cont CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Bitruncated 24-cell Schlegel halfsolid.png
Rectified icositetrachoron rico CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Schlegel half-solid cantellated 16-cell.png
Truncated icositetrachoron tico CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Schlegel half-solid truncated 24-cell.png
Icositetrachoron ico CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Schlegel wireframe 24-cell.png
Small rhombated icositetrachoron srico CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Cantel 24cell1.png
Great rhombated icositetrachoron grico CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Cantitruncated 24-cell schlegel halfsolid.png
Small rhombated icositetrachoron srico CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Cantel 24cell1.png
Great rhombated icositetrachoron grico CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Cantitruncated 24-cell schlegel halfsolid.png
Small prismatotetracontoctachoron spic CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Runcinated 24-cell Schlegel halfsolid.png
Prismatorhombated icositetrachoron prico CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Prico.png
Prismatorhombated icositetrachoron prico CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Prico.png
Great prismatotetracontoctachoron gippic CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Gippic.png
Snub disicositetrachoron sadi CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Schlegel half-solid alternated cantitruncated 16-cell.png

Isogonal derivatives[edit | edit source]

Substitution by vertices of these following elements will produce these convex isogonal polychora:

External links[edit | edit source]