Cubic honeycomb tetracomb

From Polytope Wiki
Jump to navigation Jump to search
Cubic honeycomb tetracomb
Rank5
TypeRegular, paracompact
SpaceHyperbolic
Notation
Bowers style acronymChont
Coxeter diagramx4o3o4o3o ()
Schläfli symbol{4,3,4,3}
Elements
Tera24N cubic honeycombs
Cells12MN cubes
Faces24MN squares
Edges12MN
VerticesMN
Vertex figureIcositetrachoron, edge length 2
Measures (edge length 1)
Circumradius
Related polytopes
ArmyChont
RegimentChont
DualOrder-4 icositetrachoric tetracomb
Abstract & topological properties
OrientableYes
Properties
Symmetry[4,3,4,3]
ConvexYes

The cubic honeycomb tetracomb, or chont, is a paracompact regular tiling of 4D hyperbolic space. It is paracompact because it has infinite Euclidean cubic honeycomb cells tiling 3-horospheres. 3 cubic honeycombs meet at each face, and 24 meet at each vertex.

Representations[edit | edit source]

A cubic honeycomb tetracomb has the following Coxeter diagrams:

  • x4o3o4o3o () (full symmetry)
  • x4o3o4o *b3o () (rectified hexadecachoron verf)
  • x4o3o *b3o *b3o () (rectified demitesseract verf)

External links[edit | edit source]