Cubic symmetry

From Polytope Wiki
Jump to navigation Jump to search
Cubic symmetry
Octahedral reflection domains.png
Rank3
SpaceSpherical
Order48
Info
Coxeter diagramCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Elements
Axes3 × BC2×A1, 4 × (G2×A1)/2, 6 × K3
Related polytopes
OmnitruncateGreat rhombicuboctahedron

Cubic symmetry, also known as octahedral symmetry and notated B3 or BC3, is a 3D spherical Coxeter group. It is the symmetry group of the cube and octahedron.

Subgroups[edit | edit source]

Convex polytopes with B3 symmetry[edit | edit source]

Wythoffians with B3 symmetry[edit | edit source]

o4o3o truncations
Name OBSA Schläfli symbol CD diagram Picture
Cube cube {4,3} x4o3o
Uniform polyhedron-43-t0.png
Truncated cube tic t{4,3} x4x3o
Uniform polyhedron-43-t01.png
Cuboctahedron co r{4,3} o4x3o
Uniform polyhedron-43-t1.png
Truncated octahedron toe t{3,4} o4x3x
Uniform polyhedron-43-t12.png
Octahedron oct {3,4} o4o3x
Uniform polyhedron-43-t2.png
Small rhombicuboctahedron sirco rr{4,3} x4o3x
Uniform polyhedron-43-t02.png
Great rhombicuboctahedron girco tr{4,3} x4x3x
Uniform polyhedron-43-t012.png
Snub cube snic sr{4,3} s4s3s
Uniform polyhedron-43-s012.png
o4/3o3o truncations
Name OBSA Schläfli symbol CD diagram Picture
Cube cube {4/3,3} x4/3o3o (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node.png)
Hexahedron.png
Quasitruncated hexahedron quith t{4/3,3} x4/3x3o (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node.png)
Stellated truncated hexahedron.png
Cuboctahedron co r{3,4/3} o4/3x3o (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node.png)
Cuboctahedron.png
Truncated octahedron toe t{3,4/3} o4/3x3x (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node 1.png)
Truncated octahedron.png
Octahedron oct {3,4/3} o4/3o3x (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node 1.png)
Octahedron.png
Quasirhombicuboctahedron querco rr{3,4/3} x4/3o3x (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node 1.png)
Uniform great rhombicuboctahedron.png
Quasitruncated cuboctahedron quitco tr{3,4/3} x4/3x3x (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node 1.png)
Great truncated cuboctahedron.png
(degenerate, oct+6(4)) o4/3o3ß (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node h1.png)
Octahedron.png
Icosahedron ike s{3,4/3} o4/3s3s (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node h.pngCDel 3.pngCDel node h.png)
Icosahedron.png
o4/3o3o4*a truncations
Name OBSA CD diagram Picture
(degenerate, double cover of cube) x4/3o3o4*a (CDel branch.pngCDel split2-q4.pngCDel node 1.png)
Hexahedron.png
Great cubicuboctahedron gocco x4/3x3o4*a (CDel branch 10r.pngCDel split2-q4.pngCDel node 1.png)
Great cubicuboctahedron.png
(degenerate, oct+6(4)) o4/3x3o4*a (CDel branch 10r.pngCDel split2-q4.pngCDel node.png)
Octahedron.png
(degenerate, double cover of cho) o4/3x3x4*a (CDel branch 11.pngCDel split2-q4.pngCDel node.png)
Cubohemioctahedron.png
(degenerate, oct+6(4)) o4/3o3x4*a (CDel branch 01r.pngCDel split2-q4.pngCDel node.png)
Octahedron.png
Small cubicuboctahedron socco x4/3o3x4*a (CDel branch 01r.pngCDel split2-q4.pngCDel node 1.png)
Small cubicuboctahedron.png
Cuboctatruncated cuboctahedron cotco x4/3x3x4*a (CDel branch 11.pngCDel split2-q4.pngCDel node 1.png)
Cubitruncated cuboctahedron.png