# Decagrammic-dodecagonal duoprism

Decagrammic-dodecagonal duoprism
Rank4
TypeUniform
SpaceSpherical
Info
Coxeter diagramx10/3o x12o
SymmetryI2(10)×I2(12), order 480
Elements
Vertex figureDigonal disphenoid, edge lengths (5–5)/2 (base 1), (6+2)/2 (base 2), 2 (sides)
Cells12 decagrammic prisms, 10 dodecagonal prisms
Faces120 squares, 12 decagrams, 10 dodecagons
Edges120+120
Vertices120
Measures (edge length 1)
Hypervolume15(2+3)5–25/2 ≈ 20.33620
Dichoral anglesStiddip–10/3–stiddip: 150°
Twip–12–twip: 72°
Stiddip–4–twip: 90°
Central density3
Related polytopes
DualDecagrammic-dodecagonal duotegum
ConjugatesDecagonal-dodecagonal duoprism, Decagonal-dodecagrammic duoprism, Decagrammic-dodecagrammic duoprism
Properties
ConvexNo
OrientableYes
NatureTame

The decagrammic-dodecagonal duoprism, also known as staditwadip or the 10/3-12 duoprism, is a uniform duoprism that consists of 12 decagrammic prisms and 10 dodecagonal prisms, with 2 of each meeting at each vertex.

## Vertex coordinates

The coordinates of a decagrammic-dodecagonal duoprism, centered at the origin and with unit edge length, are given by:

• (±1/2, ±5–25/2, ±(1+3)/2, ±(1+3)/2),
• (±1/2, ±5–25/2, ±1/2, ±(2+3)/2),
• (±1/2, ±5–25/2, ±(2+3)/2, ±1/2),
• (±(3–5)/4, ±(5–5)/8, ±(1+3)/2, ±(1+3)/2),
• (±(3–5)/4, ±(5–5)/8, ±1/2, ±(2+3)/2),
• (±(3–5)/4, ±(5–5)/8, ±(2+3)/2, ±1/2),
• (±(5–1)/2, 0, ±(1+3)/2, ±(1+3)/2),
• (±(5–1)/2, 0, ±1/2, ±(2+3)/2),
• (±(5–1)/2, 0, ±(2+3)/2, ±1/2).