Decayotton

From Polytope Wiki
Jump to navigation Jump to search
Decayotton
9-simplex t0.svg
Rank9
TypeRegular
SpaceSpherical
Notation
Bowers style acronymDay
Coxeter diagramx3o3o3o3o3o3o3o3o (CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png)
Schläfli symbol{3,3,3,3,3,3,3,3}
Tapertopic notation18
Elements
Yotta10 enneazetta
Zetta45 octaexa
Exa120 heptapeta
Peta210 hexatera
Tera252 pentachora
Cells210 tetrahedra
Faces120 triangles
Edges45
Vertices10
Vertex figureEnneazetton, edge length 1
Measures (edge length 1)
Circumradius
Inradius
Hypervolume
Diyottal angle
Height
Central density1
Number of external pieces10
Level of complexity1
Related polytopes
ArmyDay
RegimentDay
DualDecayotton
ConjugateNone
Abstract & topological properties
Euler characteristic2
OrientableYes
Properties
SymmetryA9, order 3628800
ConvexYes
NatureTame

The decayotton, or day, also commonly called the 9-simplex, is the simplest possible non-degenerate polyyotton. The full symmetry version has 10 regular enneazetta as facets, joining 3 to a heptapeton peak and 9 to a vertex, and is one of the 3 regular polyyotta. It is the 9-dimensional simplex.

Vertex coordinates[edit | edit source]

The vertices of a regular decayotton of edge length 1, centered at the origin, are given by:

Much simpler coordinates can be given in ten dimensions, as all permutations of:

External links[edit | edit source]

  • Klitzing, Richard. "day".