Demidekeract

From Polytope Wiki
Jump to navigation Jump to search
Demidekeract
Rank10
TypeUniform
Notation
Bowers style acronymHede
Coxeter diagramx3o3o3o3o3o3o3o3o *b3o ()
Elements
Xenna512 decayotta, 20 demienneracts
Yotta5120 enneazetta, 180 demiocteracts
Zetta23040 octaexa, 960 demihepteracts
Exa61440 heptapeta, 3360 demihexeracts
Peta107520 hexatera, 8064 demipenteracts
Tera129024 pentachora, 7680 hexadecachora
Cells15360+107520 tetrahedra
Faces61440 triangles
Edges11520
Vertices512
Vertex figureRectified decayotton, edge length 1
Measures (edge length 1)
Circumradius
Hypervolume
Dixennal anglesHenne–ene–day:
 Henne–hocto–henne: 90°
Height
Central density1
Number of external pieces532
Level of complexity8
Related polytopes
ArmyHede
RegimentHede
DualSemistellated chiliaicositetraxennon
ConjugateNone
Abstract & topological properties
Flag count14863564800
Euler characteristic0
OrientableYes
Properties
SymmetryD10, order 1857945600
ConvexYes
NatureTame

The demidekeract, or hede, also called the hemidekeract or 10-demicube, is a convex uniform polyxennon. It has 20 demienneracts and 512 decayotta as facets, with 10 of each at a vertex forming a rectified decayotton as the vertex figure. It is the 10-dimensional demihypercube and is formed by alternating the dekeract. It is also a segmentoxennon, as a demienneractic alterprism.

Vertex coordinates[edit | edit source]

The vertices of a demidekeract of edge length 1, centered at the origin, are given by all even sign changes of:

  • .

External links[edit | edit source]