Hexateron
Hexateron | |
---|---|
Rank | 5 |
Type | Regular |
Space | Spherical |
Notation | |
Bowers style acronym | Hix |
Coxeter diagram | x3o3o3o3o (![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Schläfli symbol | {3,3,3,3} |
Tapertopic notation | 14 |
Elements | |
Tera | 6 pentachora |
Cells | 15 tetrahedra |
Faces | 20 triangles |
Edges | 15 |
Vertices | 6 |
Vertex figure | Pentachoron, edge length 1 ![]() |
Measures (edge length 1) | |
Circumradius | |
Edge radius | |
Face radius | |
Cell radius | |
Inradius | |
Hypervolume | |
Diteral angle | |
Heights | Point atop pen: |
Dyad atop perp tet: | |
Trig atop perp trig: | |
Central density | 1 |
Number of external pieces | 6 |
Level of complexity | 1 |
Related polytopes | |
Army | Hix |
Regiment | Hix |
Dual | Hexateron |
Conjugate | None |
Abstract & topological properties | |
Flag count | 720 |
Euler characteristic | 2 |
Orientable | Yes |
Properties | |
Symmetry | A5, order 720 |
Convex | Yes |
Nature | Tame |
The hexateron, hix or triangular disphenoid, also commonly called the 5-simplex, is the simplest possible non-degenerate polyteron. The full symmetry version has 6 regular pentachora as cells, joining 5 to a vertex, and is one of the 3 regular polytera. It is the 5-dimensional simplex.
It can be viewed as a segmentoteron in three ways: as a pentachoric pyramid, as a dyad atop perpendicular tetrahedron, and as a triangle atop perpendicular triangle. This makes it the triangular member of an infinite family of isogonal polygonal disphenoids.
Vertex coordinates[edit | edit source]
The vertices of a regular hexateron of edge length 1, centered at the origin, are given by:
Much simpler coordinates can be given in six dimensions, as all permutations of:
Representations[edit | edit source]
A regular hexateron has the following Coxeter diagrams:
- x3o3o3o3o (full symmetry)
- ox3oo3oo3oo&#x (A4 axial, pentachoric pyramid)
- xo ox3oo3oo&#x (A3×A1 symmetry, tetrahedral scalene)
- xo3oo ox3oo&#x (A2×A2 axial, triangular disphenoid)
- oxo3ooo3ooo&#x (A3 symmetry, tetrahedral pyramidal pyramid)
- oxo oox3ooo&#x A2×A1 symmetry, triangular scalene pyramid)
- xoo oxo oox&#x (A1×A1×A1 symmetry, digonal trisphenoid)
- ooox ooxo&#x (A1×A1 symmetry, disphenoidal pyramidal pyramid)
- ooox3oooo&#x (A2 symmetry, triangular symmetry only)
- oooox&#x (A1 symmetrry only)
- oooooo&#x (no symmetry, fully irregular)
Variations[edit | edit source]
The regular hexateron has 2 subsymmetrical forms that remain isogonal:
- Triangular disphenoid - triangle atop an orthogonal triangle, facets and vertex figures are triangular scalenes
- Digonal trisphenoid - Cells and vertex figures are disphenoidal pyramids
Related polytopes[edit | edit source]
Name | OBSA | CD diagram | Picture |
---|---|---|---|
Hexateron | hix | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Rectified hexateron | rix | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Dodecateron | dot | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Rectified hexateron | rix | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Hexateron | hix | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Truncated hexateron | tix | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Bitruncated hexateron | bittix | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Bitruncated hexateron | bittix | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Truncated hexateron | tix | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Small rhombated hexateron | sarx | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Small birhombidodecateron | sibrid | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Small rhombated hexateron | sarx | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Great rhombated hexateron | garx | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Great birhombidodecateron | gibrid | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Great rhombated hexateron | garx | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Small prismated hexateron | spix | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Small prismated hexateron | spix | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Prismatotruncated hexateron | pattix | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Prismatorhombated hexateron | pirx | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Prismatorhombated hexateron | pirx | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Prismatotruncated hexateron | pattix | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Great prismated hexateron | gippix | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Great prismated hexateron | gippix | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Small cellidodecateron | scad | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Celliprismated hexateron | cappix | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Cellirhombidodecateron | card | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Celligreatorhombated hexateron | cograx | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Celliprismated hexateron | cappix | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Celliprismatotruncatododecateron | captid | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Celligreatorhombated hexateron | cograx | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Great cellidodecateron | gocad | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
External links[edit | edit source]
- Bowers, Jonathan. "Category 1: Primary Polytera" (#1).
- Klitzing, Richard. "hix".
- Wikipedia Contributors. "5-simplex".
- Hi.gher.Space Wiki Contributors. "Pyroteron".
- Hartley, Michael. "{3,3,3,3}*720".