Ditrigonary tetrishecatonicosihexacosichoron

From Polytope Wiki
Jump to navigation Jump to search
Ditrigonary tetrishecatonicosihexacosichoron
Rank4
TypeUniform
SpaceSpherical
Notation
Bowers style acronymDituthix
Elements
Cells120 gid, 120 id, 120 ided, 120 quitdid, 600 cho
Faces2400 triangles, 3600 squares, 1440 pentagons, 1440 pentagrams, 2400 hexagons, 720 decagons, 720 decagrams
Edges7200
Vertices1200
Measures (edge length 1)
Circumradius
Related polytopes
ArmyRahi
RegimentRissidtixhi
ConjugateDitrigonary tetrishecatonicosihexacosichoron
Abstract properties
Euler characteristic5640
Topological properties
OrientableNo
Properties
SymmetryH4, order 14400
ConvexNo
NatureWild
Discovered by{{{discoverer}}}

The ditrigonary tetrishecatonicosihexacosichoron, or dituthix, is a nonconvex uniform polychoron that consists of 120 great icosidodecahedra, 120 icosidodecahedra, 120 icosidodecadodecahedra, 120 quasitruncated dodecadodecahedra, and 600 cubohemioctahedra. Three great icosidodecahedra, three icosidodecahedra, six icosidodecadodecahedra, twelve quasitruncated dodecadodecahedra, and six cubohemioctahedra join at each vertex.

Vertex coordinates[edit | edit source]

Its vertices are the same as those of its regiment colonel, the rectified small ditrigonary hexacosihecatonicosachoron.

External links[edit | edit source]