Ditrigonary trishecatonicosihexacosichoron

From Polytope Wiki
Jump to navigation Jump to search
Ditrigonary trishecatonicosihexacosichoron
Rank4
TypeUniform
SpaceSpherical
Notation
Bowers style acronymDit thix
Elements
Cells120 gidditdid, 120 sidditdid, 120 ided, 600 oho
Faces4800 triangles, 1440 pentagons, 1440 pentagrams, 2400 hexagons, 720 decagons, 720 decagrams
Edges7200
Vertices1200
Measures (edge length 1)
Circumradius
Related polytopes
ArmyRahi
RegimentRissidtixhi
ConjugateDitrigonary trishecatonicosihexacosichoron
Abstract properties
Euler characteristic4560
Topological properties
OrientableNo
Properties
SymmetryH4, order 14400
ConvexNo
NatureWild
Discovered by{{{discoverer}}}

The ditrigonary trishecatonicosihexacosichoron, or dit thix, is a nonconvex uniform polychoron that consists of 120 great ditrigonal dodecicosidodecahedra, 120 small ditrigonal dodecicosidodecahedra, 120 icosidodecadodecahedra, and 600 octahemioctahedra. Six great ditrigonal dodecicosidodecahedra, six small ditrigonal dodecicosidodecahedra, six icosidodecadodecahedra, and six octahemioctahedra join at each vertex.

Vertex coordinates[edit | edit source]

Its vertices are the same as those of its regiment colonel, the rectified small ditrigonary hexacosihecatonicosachoron.

External links[edit | edit source]