Enneagonal antiprism

From Polytope Wiki
Jump to navigation Jump to search
Enneagonal antiprism
Enneagonal antiprism.png
Rank3
TypeUniform
SpaceSpherical
Notation
Bowers style acronymEap
Coxeter diagrams2s18o
Elements
Faces18 triangles, 2 enneagons
Edges18+18
Vertices18
Vertex figureIsosceles trapezoid, edge lengths 1, 1, 1, 2cos(π/9)
Measures (edge length 1)
Circumradius
Volume
Dihedral angles3–3:
 9–3:
Height
Central density1
Number of pieces20
Level of complexity4
Related polytopes
ArmyEap
RegimentEap
DualEnneagonal antitegum
ConjugateGreat enneagrammic retroprism
Abstract properties
Euler characteristic2
Topological properties
SurfaceSphere
OrientableYes
Genus0
Properties
SymmetryI2(18)×A1/2, order 36
ConvexYes
NatureTame

The enneagonal antiprism, or eap, is a prismatic uniform polyhedron. It consists of 18 triangles and 2 enneagons. Each vertex joins one enneagon and three triangles. As the name suggests, it is an antiprism based on an enneagon.

Vertex coordinates[edit | edit source]

The vertices of an enneagonal antiprism, centered at the origin and with edge length 2sin(π/9), are given by the following points, as well as their central inversions:

where

External links[edit | edit source]