Enneagonal tiling

From Polytope Wiki
Jump to navigation Jump to search
Enneagonal tiling
X9o3o hr.png
Rank3
TypeRegular
SpaceHyperbolic
Notation
Bowers style acronymEnat
Coxeter diagramx9o3o (CDel node 1.pngCDel 9.pngCDel node.pngCDel 3.pngCDel node.png)
Schläfli symbol{9,3}
Elements
Faces2N Enneagons
Edges9N
Vertices6N
Vertex figureTriangle, edge length 2cos(π/9)
Measures (edge length 1)
Circumradius
Related polytopes
ArmyEnat
RegimentEnat
DualOrder-9 triangular tiling
Topological properties
SurfaceSphere
OrientableYes
Genus0
Properties
Symmetry[9,3]
ConvexYes


The order-3 enneagonal tiling, or just enneagonal tiling, is a regular tiling of the hyperbolic plane. 3 enneagons join at each vertex.

Related polytopes[edit | edit source]

o9o3o truncations
Name OBSA Schläfli symbol CD diagram Picture
Enneagonal tiling enat {9,3} x9o3o
X9o3o hr.png
Truncated enneagonal tiling tenat t{9,3} x9x3o
Trienneagonal tiling tent r{9,3} o9x3o
Truncated order-9 triangular tiling tentrat t{3,9} o9x3x
Order-9 triangular tiling entrat {3,9} o9o3x
O9o3x hr.png
Small rhombitrienneagonal tiling srotent rr{9,3} x9o3x
Great rhombitrienneagonal tiling grotent tr{9,3} x9x3x
Uniform tiling 93-t012.png
Snub trienneagonal tiling snatent sr{9,3} s9s3s