Enneazetton

From Polytope Wiki
Jump to navigation Jump to search
Enneazetton
8-simplex t0.svg
Rank8
TypeRegular
SpaceSpherical
Notation
Bowers style acronymEne
Coxeter diagramx3o3o3o3o3o3o3o (CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png)
Schläfli symbol{3,3,3,3,3,3,3}
Tapertopic notation17
Elements
Zetta9 octaexa
Exa36 heptapeta
Peta84 hexatera
Tera126 pentachora
Cells126 tetrahedra
Faces84 triangles
Edges36
Vertices9
Vertex figureOctaexon, edge length 1
Measures (edge length 1)
Circumradius
Inradius
Hypervolume
Dizettal angle
Height
Central density1
Number of external pieces9
Level of complexity1
Related polytopes
ArmyEne
RegimentEne
DualEnneazetton
ConjugateNone
Abstract & topological properties
Flag count362880
Euler characteristic0
OrientableYes
Properties
SymmetryA8, order 362880
ConvexYes
NatureTame

The enneazetton, or ene, also commonly called the 8-simplex, is the simplest possible non-degenerate polyzetton. The full symmetry version has 9 regular octaexa as facets, joining 3 to a hexateron peak and 8 to a vertex, and is one of the 3 regular polyzetta. It is the 8-dimensional simplex.

Vertex coordinates[edit | edit source]

The vertices of a regular enneazetton of edge length 1, centered at the origin, are given by:

Much simpler coordinates can be given in nine dimensions, as all permutations of:

Representations[edit | edit source]

A regular enneazetton has the following Coxeter diagrams:

  • x3o3o3o3o3o3o3o (full symmetry)
  • ox3oo3oo3oo3oo3oo3oo&#x (A7 axial, octaexal pyramid)

External links[edit | edit source]

  • Klitzing, Richard. "ene".