Excavated truncated rhombicuboctahedron
Excavated truncated rhombicuboctahedron | |
---|---|
Rank | 3 |
Type | Quasi-convex Stewart toroid |
Elements | |
Faces | 8 triangles, 6+24+24+24+48 squares, 8 hexagons, 6 octagons |
Edges | 24+24+24+24+24+24+24+48+48+48 |
Vertices | 24+24+48+48 |
Measures (edge length 1) | |
Volume | |
Surface area | |
Dihedral angles | 4-4 (op lacing, narrow): |
4-4 (op lacing, wide): | |
4-6 (tricu to trip): | |
4-8 (squacu to trip): | |
4-4 (in squacu): 135° | |
3-4 (in tricu): | |
4-4 (trip lacings): 60° | |
4–6 (in tricu): | |
4-8 (in squacu): 45° | |
Related polytopes | |
Convex hull | Truncated rhombicuboctahedron |
Abstract & topological properties | |
Flag count | 1248 |
Euler characteristic | –20 |
Orientable | Yes |
Genus | 11 |
Properties | |
Symmetry | B3, order 48 |
Flag orbits | 26 |
Convex | No |
Nature | Tame |
History | |
Discovered by | Alex Doskey |
First discovered | 2004 |
The excavated truncated rhombicuboctahedron is a quasi-convex Stewart toroid. It can be obtained by excavating 12 unit-edge-length irregular octagonal prisms from a truncated rhombicuboctahedron, then excavating the central polyhedron as well (blending it with the remaining irregular-octagon faces of the prisms and opening up that space). Since the irregular faces are all blended away, the toroid is regular-faced. Its convex hull is an equilateral truncated rhombicuboctahedron, with 6 regular octagons, 12 rectangular-symmetric octagons, 8 hexagons, and 24 squares.
The central polyhedron is a truncation of the rhombic dodecahedron that cuts away both types of vertices, with 6 squares, 8 triangles, and 12 rectangular-symmetric octagons.
The excavated truncated rhombicuboctahedron can also be obtained by outer-blending six square cupolae, eight triangular cupolae, and twenty-four triangular prisms together.
Vertex coordinates[edit | edit source]
This polytope is missing vertex coordinates.(April 2024) |
Related polyhedra[edit | edit source]
If the cupolae are "contracted" into pyramids (by removing the side squares and pulling the side triangle faces together, like the opposite of a partial expansion), an excavated expanded cuboctahedron will be formed.
If the triangular prisms are removed (and the cupolae brought together), a truncated cuboctahedron excavated with cubes and a central small rhombicuboctahedron will be formed.
External links[edit | edit source]
- Wikipedia contributors. "Excavated truncated rhombicuboctahedron".
- Doskey, Alex. "Prism Expansions".