Generalized hypercube

From Polytope Wiki
Jump to navigation Jump to search
γ p
n
 
Rankn 
Dimensionn 
TypeRegular
SpaceComplex
Notation
Coxeter diagram...
Schläfli symbolp{4}2{3}2...2{3}2{3}2
Elements
Facetspn  γ p
n-1
 
Edges2p n-1  p -edges
Verticesp n 
Vertex figure(n -1)-simplex
Related polytopes
DualGeneralized orthoplex
Abstract & topological properties
Flag count
Properties
Symmetryp[4]2[3]2...2[3]2[3]2, order

The generalized hypercubes, γ p
n
 
, are a family of regular complex polytopes that generalize the hypercubes.

The generalized hypercube γ p
n
 
can be formed as the prism product of n  identical p -edges. This means that the real analogs of generalized hypercubes are multiprisms.

The generalized hypercubes of the form γ 2
n
 
have real valued coordinates and are exactly the hypercubes.

Vertex coordinates[edit | edit source]

Vertex coordinates for the generalized hypercube γ p
n
 
can be given as:

  • ,

where each x k  is an integer ranging between 1 and p  inclusive.

External links[edit | edit source]