Great ditrigonal dodecicosidodecahedral prism

From Polytope Wiki
Jump to navigation Jump to search
Great ditrigonal dodecicosidodecahedral prism
Gidditdiddip.png
Rank4
TypeUniform
SpaceSpherical
Notation
Bowers style acronymGidditdiddip
Coxeter diagramx x5/3x3o5*b (CDel node 1.pngCDel 2.pngCDel label3.pngCDel branch 10ru.pngCDel split2-f5.pngCDel node 1.png)
Elements
Cells20 triangular prisms, 12 pentagonal prisms, 12 decagrammic prisms, 2 great ditrigonal dodecicosidodecahedra
Faces40 triangles, 60+60 squares, 24 pentagons, 24 decagrams
Edges60+120+120
Vertices120
Vertex figureIsosceles trapezoidal pyramid, edge lengths 1, (5–5)/2, (1+5)/2, (5–5)/2 (base), 2 (legs)
Measures (edge length 1)
Circumradius
Hypervolume
Dichoral anglesTrip–4–stiddip:
 Pip–4–stiddip:
 Gidditdid–5–pip: 90°
 Gidditdid–3–trip: 90°
 Gidditdid–10/3–stiddip: 90°
Height1
Central density4
Number of pieces154
Related polytopes
ArmySemi-uniform Tiddip
RegimentGidditdiddip
DualGreat ditrigonal dodecacronic hexecontahedral tegum
ConjugateSmall ditrigonal dodecicosidodecahedral prism
Abstract properties
Euler characteristic–18
Topological properties
OrientableYes
Properties
SymmetryH3×A1, order 240
ConvexNo
NatureTame

The great ditrigonal dodecicosidodecahedral prism or gidditdiddip is a prismatic uniform polychoron that consists of 2 great ditrigonal dodecicosidodecahedra, 12 pentagonal prisms, 20 triangular prisms, and 12 decagrammic prisms. Each vertex joins 1 great ditrigonal dodecicosidodecahedron, 1 pentagonal prism, 1 triangular prism, and 2 decagrammic prisms. As the name suggests, it is a prism based on the great ditrigonal dodecicosidodecahedron.

Vertex coordinates[edit | edit source]

The vertices of a great ditrigonal dodecicosidodecahedral prism of edge length 1 are given by all even permutations of the first three coordinates of:

External links[edit | edit source]