Compound of two great inverted snub icosidodecahedra

From Polytope Wiki
Jump to navigation Jump to search
Compound of two great inverted snub icosidodecahedra
Bowers style acronymGidsid
Components2 great inverted snub icosidodecahedra
Faces120 triangles, 40 triangles as 20 hexagrams, 24 pentagrams as 12 stellated decagrams
Vertex figureIrregular pentagon, edge lengths 1, 1, 1, 1, (5–1)/2
Measures (edge length 1)
Circumradius≈ 0.64502
Volume≈ 5.42774
Dihedral angles3–3: ≈ 89.78760°
 5/2–3: ≈ 21.61047°
Central density26
Number of external pieces1560
Level of complexity100
Related polytopes
ArmySemi-uniform Grid
DualCompound of two great inverted pentagonal hexecontahedra
ConjugatesCompound of two snub dodecahedra, compound of two great snub icosidodecahedra, compound of two great inverted retrosnub icosidodecahedra
Convex coreOrder-6-truncated disdyakis triacontahedron
Abstract & topological properties
Flag count1200
SymmetryH3, order 120

The great inverted disnub icosidodecahedron, gidsid, or compound of two great inverted snub icosidodecahedra is a uniform polyhedron compound. It consists of 120 snub triangles, 40 further triangles, and 24 pentagrams (the latter two can combine in pairs due to faces in the same plane). Four triangles and one pentagram join at each vertex.

Its quotient prismatic equivalent is the great inverted snub icosidodecahedral antiprism, which is four-dimensional.

Measures[edit | edit source]

The circumradius of the great inverted disnub icosidodecahedron with unit edge length is the second to smallest positive real root of:

Its volume is given by the third largest positive real root of:

External links[edit | edit source]