Great quasidisprismatohecatonicosihecatonicosachoron
Jump to navigation
Jump to search
Great quasidisprismatohecatonicosihecatonicosachoron | |
---|---|
Rank | 4 |
Type | Uniform |
Notation | |
Bowers style acronym | Gaquidphihi |
Coxeter diagram | x5/3x3x5x () |
Elements | |
Cells | 720 decagonal prisms, 720 decagrammic prisms, 120 great rhombicosidodecahedra, 120 great quasitruncated icosidodecahedra |
Faces | 3600+3600+3600 squares, 2400 hexagons, 1440 decagons, 1440 decagrams |
Edges | 7200+7200+7200+7200 |
Vertices | 14400 |
Vertex figure | Irregular tetrahedron, edge lengths √2 (3), √3 (1), √(5+√5)/2 (1), and √(5–√5)/2 (1) |
Measures (edge length 1) | |
Circumradius | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3\sqrt2 \approx 4.24264} |
Hypervolume | 2850 |
Dichoral angles | Gaquatid–10/3–stiddip: 162° |
Dip–4–stiddip: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \arccos\left(-\frac{2\sqrt5}{5}\right) \approx 153.43495^\circ} | |
Grid–10–dip: 126° | |
Gaquatid–6–grid: 60° | |
Grid–4–stiddip: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \arccos\left(\sqrt{\frac{5-\sqrt5}{10}}\right) \approx 58.28253^\circ} | |
Gaquatid–4–dip: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \arccos\left(\sqrt{\frac{5+\sqrt5}{10}}\right) \approx 31.71747^\circ} | |
Number of external pieces | 105240 |
Level of complexity | 363 |
Related polytopes | |
Army | Semi-uniform Gidpixhi, edge lengths Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3-\sqrt5}{2}} (sides of ditrigonal prisms), Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt5-2} (remaining edges of dipentagons), Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7-3\sqrt5}{2}} (non-dipentagonal edges of great rhombicosidodecahedra)), Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3\sqrt5-5}{2}} (edges not in great rhombicosidodecahedra) |
Regiment | Gaquidphihi |
Conjugate | Great quasidisprismatohecatonicosihecatonicosachoron |
Convex core | Hecatonicosachoron |
Abstract & topological properties | |
Flag count | 345600 |
Euler characteristic | 0 |
Orientable | Yes |
Properties | |
Symmetry | H4, order 14400 |
Convex | No |
Nature | Tame |
The great quasidisprismatohecatonicosihecatonicosachoron, or gaquidphihi, is a nonconvex uniform polychoron that consists of 720 decagonal prisms, 720 decagrammic prisms, 120 great rhombicosidodecahedron, and 120 great quasitruncated icosidodecahedra. 1 of each type of cell join at each vertex. It is the quasiomnitruncate of the grand hecatonicosachoron and the great stellated hecatonicosachoron.
Cross-sections[edit | edit source]
Vertex coordinates[edit | edit source]
Vertex coordinates for a great quasidisprismatohecatonicosihecatonicosachoron of edge length 1 are given by all permutations of:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3\sqrt5-5}{4},\,\pm \frac{3\sqrt5-5}{4},\,\pm 3\frac{1+\sqrt5}{4},\,\pm \frac{7+3\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac12,\,\pm \frac12,\,\pm \frac{2\sqrt5-3}{2},\,\pm \frac{6+\sqrt5}{2}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac12,\,\pm \frac12,\,\pm \frac{6-\sqrt5}{2},\,\pm \frac{3+2\sqrt5}{2}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac12,\,\pm \frac12,\,\pm \frac52,\,\pm \frac{3\sqrt5}{2}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm 3\frac{\sqrt5-1}{4},\,\pm 3\frac{\sqrt5-1}{4},\,\pm \frac{7+\sqrt5}{4},\,\pm \frac{11+\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{9-\sqrt5}{4},\,\pm \frac{9-\sqrt5}{4},\,\pm \frac{1+3\sqrt5}{4},\,\pm \frac{5+3\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm 3\frac{1+\sqrt5}{4},\,\pm 3\frac{1+\sqrt5}{4},\,\pm \frac{7-\sqrt5}{4},\,\pm \frac{11-\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{5+3\sqrt5}{4},\,\pm \frac{5+3\sqrt5}{4},\,\pm \frac{7-3\sqrt5}{4},\,\pm 3\frac{\sqrt5-1}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{9+\sqrt5}{4},\,\pm \frac{9+\sqrt5}{4},\,\pm \frac{3\sqrt5-5}{4},\,\pm \frac{3\sqrt5-1}{4}\right),}
Plus all even permutations of:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{7-3\sqrt5}{4},\,\pm \frac{3-\sqrt5}{4},\,\pm 1,\,\pm \frac{6+\sqrt5}{2}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{7-3\sqrt5}{4},\,\pm \frac{\sqrt5-1}{2},\,\pm \frac{4+\sqrt5}{2},\,\pm \frac{9+\sqrt55}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{7-3\sqrt5}{4},\,\pm \frac{7-\sqrt5}{4},\,\pm \frac{1+\sqrt5}{2},\,\pm \frac{3+2\sqrt5}{2}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{7-3\sqrt5}{4},\,\pm \frac{3+\sqrt5}{4},\,\pm \frac{1+3\sqrt5}{4},\,\pm \frac{3+5\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{\sqrt5-2}{2},\,\pm \frac{3\sqrt5-5}{4},\,\pm \frac{11+\sqrt5}{4},\,\pm \frac{3+\sqrt5}{2}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{\sqrt5-2}{2},\,\pm \frac12,\,\pm \frac{4-\sqrt5}{2},\,\pm \frac{6+\sqrt5}{2}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{\sqrt5-2}{2},\,\pm \frac{7-\sqrt5}{4},\,\pm \frac{3+\sqrt5}{4},\,\pm \frac{1+3\sqrt5}{2}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{\sqrt5-2}{2},\,\pm (\sqrt5-1),\,\pm \frac{9+\sqrt5}{4},\,\pm \frac{5+3\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{\sqrt5-2}{2},\,\pm \frac32,\,\pm \frac{2+\sqrt5}{2},\,\pm \frac{3\sqrt5}{2}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3-\sqrt5}{4},\,\pm \frac{3-\sqrt5}{2},\,\pm 3\frac{\sqrt5-1}{4},\,\pm \frac{6+\sqrt5}{2}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3-\sqrt5}{4},\,\pm \frac{3\sqrt5-5}{4},\,\pm \frac{13+\sqrt5}{4},\,\pm \frac{5+\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3-\sqrt5}{4},\,\pm \frac12,\,\pm \frac{1+3\sqrt5}{2},\,\pm \frac{9-\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3-\sqrt5}{4},\,\pm \frac12,\,\pm (1+\sqrt5),\,\pm \frac{13-\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3-\sqrt5}{4},\,\pm \frac{\sqrt5}{2},\,\pm \frac{3\sqrt5-1}{2},\,\pm \frac{5+3\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3-\sqrt5}{4},\,\pm \frac{7-\sqrt5}{4},\,\pm \frac{3\sqrt5-1}{4},\,\pm \frac{13+\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3-\sqrt5}{4},\,\pm \frac{3\sqrt5-1}{4},\,\pm \frac{5\sqrt5-3}{4},\,\pm \frac{7+3\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3-\sqrt5}{4},\,\pm \frac{5\sqrt5-3}{4},\,\pm \frac{9+\sqrt5}{4},\,\pm 3\frac{1+\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3-\sqrt5}{4},\,\pm \frac{2+\sqrt5}{2},\,\pm \frac{3\sqrt5-1}{2},\,\pm \frac{7+\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3-\sqrt5}{2},\,\pm \frac{3\sqrt5-5}{4},\,\pm \frac{3+2\sqrt5}{2},\,\pm \frac{9-\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3-\sqrt5}{2},\,\pm \frac{\sqrt5-1}{2},\,\pm \frac{1+3\sqrt5}{2},\,\pm \frac{1+\sqrt5}{2}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3-\sqrt5}{2},\,\pm \frac{2+\sqrt5}{2},\,\pm \frac{5+3\sqrt5}{4},\,\pm \frac{11-\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3-\sqrt5}{2},\,\pm \frac{1+3\sqrt5}{4},\,\pm \frac{9+\sqrt5}{4},\,\pm \frac52\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3\sqrt5-5}{4},\,\pm \frac12,\,\pm \sqrt5,\,\pm \frac{3+5\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3-\sqrt5-5}{4},\,\pm \frac{\sqrt5-1}{2},\,\pm \frac{5-\sqrt5}{4},\,\pm \frac{6+\sqrt5}{2}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3\sqrt5-5}{4},\,\pm \frac{\sqrt5}{2},\,\pm \frac{1+3\sqrt5}{2},\,\pm \frac{3+\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac{3\sqrt5-5}{4},\,\pm \frac{9-\sqrt5}{4},\,\pm \frac{2+\sqrt5}{2},\,\pm (1+\sqrt5)\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac12,\,\pm \frac{\sqrt5-1}{2},\,\pm \frac{11-\sqrt5}{4},\,\pm \frac{3+5\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac12,\,\pm \frac{\sqrt5-1}{2},\,\pm \frac{13+\sqrt5}{4},\,\pm \frac{9-\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac12,\,\pm 3\frac{\sqrt5-1}{4},\,\pm \frac{1+3\sqrt5}{2},\,\pm \frac{3\sqrt5-1}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac12,\,\pm (\sqrt5-1),\,\pm \frac{13+\sqrt5}{4},\,\pm \frac{3+\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac12,\,\pm \frac{3+\sqrt5}{4},\,\pm \frac{1+3\sqrt5}{2},\,\pm \frac{9+\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac12,\,\pm \frac{1+\sqrt5}{2},\,\pm \frac{5\sqrt5-3}{4},\,\pm \frac{11+\sqrt5}{4}\right),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\pm \frac12,\,\pm \frac{1+\sqrt5}{2},\,\pm \frac{9+\sqrt5}{4},\,\pm \frac{13-\sqrt5}{4}\right),}
External links[edit | edit source]
- Bowers, Jonathan. "Category 9: Omnitruncates" (#338).
- Klitzing, Richard. "gaquidphihi".