Great rhombicuboctahedron

From Polytope Wiki
Jump to navigation Jump to search
Great rhombicuboctahedron
Great rhombicuboctahedron.png
Rank3
TypeUniform
SpaceSpherical
Notation
Bowers style acronymGirco
Coxeter diagramx4x3x (CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png)
Elements
Faces12 squares, 8 hexagons, 6 octagons
Edges24+24+24
Vertices48
Vertex figureScalene triangle, edge lengths 2, 3, 2+2
Great rhombicuboctahedron vertfig.png
Measures (edge length 1)
Circumradius
Volume
Dihedral angles6–4:
 8–4: 135°
 8–6:
Central density1
Number of pieces26
Level of complexity6
Related polytopes
ArmyGirco
RegimentGirco
DualDisdyakis dodecahedron
ConjugateQuasitruncated cuboctahedron
Abstract properties
Flag count288
Euler characteristic2
Topological properties
SurfaceSphere
OrientableYes
Genus0
Properties
SymmetryB3, order 48
ConvexYes
NatureTame

The great rhombicuboctahedron or girco, also commonly known as the truncated cuboctahedron, is one of the 13 Archimedean solids. It consists of 12 squares, 8 hexagons, and 6 octagons, with one of each type of face meeting per vertex. It can be obtained by cantitruncation of the cube or octahedron, or equivalently by truncating the vertices of a cuboctahedron and then adjusting the edge lengths to be all equal.

This is one of three Wythoffian non-prismatic polyhedra whose Coxeter diagram has all ringed nodes, the other two being the great rhombitetratetrahedron and the great rhombicosidodecahedron.

It can be alternated into the snub cube after equalizing edge lengths.

Naming[edit | edit source]

Rhombi refers to the twelve square faces on the axis of the rhombic dodecahedron, cub(e) refers to the six faces on the axis of the cube, and octahedron for the eight hexagons on the axis of the octahedron.

Alternate names include:

  • Truncated cuboctahedron (a translation of Kepler's Latin name), because it can be derived by truncating the cuboctahedron. However, it is not a true truncation of the rhombicuboctahedron, as a true truncation would result in rectangles rather than squares. Kepler used a different word for this sense of "truncated", but it was lost in translation.
  • Rhombitruncated cuboctahedron (similar to the above, but also refers to the planes of the truncated faces).
  • Great rhombcuboctahedron (no "i") - alternate spelling.

Vertex coordinates[edit | edit source]

A great rhombicuboctahedron of edge length 1 has vertex coordinates given by all permutations of:

Representations[edit | edit source]

A great rhombicuboctahedron has the following Coxeter diagrams:

  • x4x3x (full symmetry)
  • xxwwxx4xuxxux&#xt (BC2 axial, octagon-first)
  • wx3xx3xw&#zx (A3 symmetry, as hull of two inverse great rhombitetratetrahedra)
  • Xwx xxw4xux&#zx (BC2×A1 symmetry)
  • xxuUxwwx3xwwxUuxx&#xt (A2 axial, hexagon-first)

Semi-uniform variant[edit | edit source]

The great rhombicuboctahedron has a semi-uniform variant of the form x4y3z that maintains its full symmetry. This variant has 6 ditetragons, 8 ditrigons, and 12 rectangles as faces.

With edges of length a (ditetragon-rectangle), b (ditetragon-ditrigon), and c (ditrigon-rectangle), its circumradius is given by and its volume is given by .

It has coordinates given by all permutations of:

Related polyhedra[edit | edit source]

o4o3o truncations
Name OBSA Schläfli symbol CD diagram Picture
Cube cube {4,3} x4o3o
Uniform polyhedron-43-t0.png
Truncated cube tic t{4,3} x4x3o
Uniform polyhedron-43-t01.png
Cuboctahedron co r{4,3} o4x3o
Uniform polyhedron-43-t1.png
Truncated octahedron toe t{3,4} o4x3x
Uniform polyhedron-43-t12.png
Octahedron oct {3,4} o4o3x
Uniform polyhedron-43-t2.png
Small rhombicuboctahedron sirco rr{4,3} x4o3x
Uniform polyhedron-43-t02.png
Great rhombicuboctahedron girco tr{4,3} x4x3x
Uniform polyhedron-43-t012.png
Snub cube snic sr{4,3} s4s3s
Uniform polyhedron-43-s012.png

External links[edit | edit source]