Great rhombitrioctagonal tiling

From Polytope Wiki
Jump to navigation Jump to search
Great rhombitrioctagonal tiling
H2-8-3-omnitruncated.svg
Rank3
TypeUniform
SpaceHyperbolic
Notation
Bowers style acronymGrotoct
Coxeter diagramx8x3x (CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node 1.png)
Elements
Faces12N squares, 8N hexagons, 3N hexadecagons
Edges24N+24N+n24N
Vertices48N
Vertex figureScalene triangle, edge lengths 2, 2+2, 2+2+2
Measures (edge length 1)
Circumradius
Related polytopes
ArmyGrotoct
RegimentGrotoct
Dual3-8 kisrhombille tiling
Abstract & topological properties
SurfaceSphere
OrientableYes
Genus0
Properties
Symmetry[8,3]
ConvexYes

The great rhombitrioctagonal tiling or grotoct, also called the truncated trioctagonal tiling, is a uniform tiling of the hyperbolic plane. 1 square, 1 hexagon and 1 hexadecagon join at each vertex. It can be formed by cantitruncation of either the octagonal tiling or its dual order-8 triangular tiling, or equivalently by truncation of the trioctagonal tiling.

Related polytopes[edit | edit source]

o8o3o truncations
Name OBSA Schläfli symbol CD diagram Picture
Octagonal tiling ocat {8,3} x8o3o
Uniform tiling 83-t0.png
Truncated octagonal tiling tocat t{8,3} x8x3o
Uniform tiling 83-t01.png
Trioctagonal tiling toct r{8,3} o8x3o
Uniform tiling 83-t1.png
Truncated order-8 triangular tiling totrat t{3,8} o8x3x
Uniform tiling 83-t12.png
Order-8 triangular tiling otrat {3,8} o8o3x
Uniform tiling 83-t2.png
Small rhombitrioctagonal tiling srotoct rr{8,3} x8o3x
Uniform tiling 83-t02.png
Great rhombitrioctagonal tiling grotoct tr{8,3} x8x3x
Uniform tiling 83-t012.png
Snub trioctagonal tiling snatoct sr{8,3} s8s3s
Uniform tiling 83-snub.png

External links[edit | edit source]