Rank2
TypeRegular
Notation
Bowers style acronymGetag
Coxeter diagramx14/5o ()
Schläfli symbol{14/5}
Elements
Edges14
Vertices14
Vertex figureDyad, length ${\displaystyle 2\cos(5\pi /14)}$
Measures (edge length 1)
Circumradius${\displaystyle {\frac {1}{2\sin {\frac {5\pi }{14}}}}\approx 0.55694}$
Inradius${\displaystyle {\frac {1}{2\tan {\frac {5\pi }{14}}}}\approx 0.24079}$
Area${\displaystyle {\frac {7}{2\tan {\frac {5\pi }{14}}}}\approx 1.68551}$
Angle${\displaystyle {\frac {2\pi }{7}}\approx 51.42857^{\circ }}$
Central density5
Number of external pieces28
Level of complexity2
Related polytopes
ArmyTed, edge length ${\displaystyle {\frac {\sin {\frac {\pi }{14}}}{\cos {\frac {\pi }{7}}}}}$
Abstract & topological properties
Flag count28
Euler characteristic0
Schläfli type{14}
OrientableYes
Properties
SymmetryI2(14), order 28
ConvexNo
NatureTame

The great tetradecagram, or getag, is a non-convex polygon with 14 sides. It's created by taking the fourth stellation of a tetradecagon. A regular great tetradecagram has equal sides and equal angles.

It is one of two regular 14-sided star polygons, the other being the tetradecagram.

It is the uniform quasitruncation of the heptagram.