Great tridecagram

Great tridecagram
Rank2
TypeRegular
Notation
Bowers style acronymGet
Coxeter diagramx13/5o ()
Schläfli symbol{13/5}
Elements
Edges13
Vertices13
Measures (edge length 1)
Circumradius${\displaystyle {\frac {1}{2\sin {\frac {5\pi }{13}}}}\approx 0.53475}$
Inradius${\displaystyle {\frac {1}{2\tan {\frac {5\pi }{13}}}}\approx 0.18962}$
Area${\displaystyle {\frac {13}{4\tan {\frac {5\pi }{13}}}}\approx 1.23256}$
Angle${\displaystyle {\frac {3\pi }{13}}\approx 41.53846^{\circ }}$
Central density5
Number of external pieces26
Level of complexity2
Related polytopes
ArmyTad, edge length ${\displaystyle {\frac {\sin {\frac {\pi }{13}}}{\sin {\frac {5\pi }{13}}}}}$
DualGreat tridecagram
ConjugatesTridecagon, Small tridecagram, Tridecagram, Medial tridecagram, Grand tridecagram
Convex coreTridecagon
Abstract & topological properties
Flag count26
Euler characteristic0
OrientableYes
Properties
SymmetryI2(13), order 26
Flag orbits1
ConvexNo
NatureTame

The great tridecagram is a non-convex polygon with 13 sides. It's created by taking the fourth stellation of a tridecagon. A regular great tridecagram has equal sides and equal angles.

It is one of five regular 13-sided star polygons, the other four being the small tridecagram, the tridecagram, the medial tridecagram, and the grand tridecagram.