Gyroelongated square bicupola |
---|
|
Rank | 3 |
---|
Type | CRF |
---|
Notation |
---|
Bowers style acronym | Gyesquibcu |
---|
Coxeter diagram | soxo8oxos&#xt |
---|
Elements |
---|
Faces | |
---|
Edges | 7×8 |
---|
Vertices | 3×8 |
---|
Vertex figures | 8 isosceles trapezoids, edge lengths 1, √2, √2, √2 |
---|
| 16 irregular pentagons, edge lengths 1, 1, 1, 1, √2 |
---|
Measures (edge length 1) |
---|
Volume | |
---|
Dihedral angles | 3–3 antiprismatic: |
---|
| 3–3 join: |
---|
| 3–4 cupolaic: |
---|
| 3–4 join: |
---|
| 4–4: 135° |
---|
Central density | 1 |
---|
Number of external pieces | 34 |
---|
Level of complexity | 28 |
---|
Related polytopes |
---|
Army | Gyesquibcu |
---|
Regiment | Gyesquibcu |
---|
Dual | Tetradeltoctapentagonal icositetrahedron |
---|
Conjugate | Gyroelongated retrograde square bicupola |
---|
Abstract & topological properties |
---|
Flag count | 224 |
---|
Euler characteristic | 2 |
---|
Surface | Sphere |
---|
Orientable | Yes |
---|
Genus | 0 |
---|
Properties |
---|
Symmetry | (B2×A1)+, order 8 |
---|
Flag orbits | 28 |
---|
Convex | Yes |
---|
Nature | Tame |
---|
The gyroelongated square bicupola (OBSA: gyesquibcu) is one of the 92 Johnson solids (J45). It consists of 8+8+8 triangles and 2+8 squares. It can be constructed by attaching square cupolas to the bases of the octagonal antiprism.
It is one of the five Johnson solids to be chiral.
A gyroelongated square bicupola of edge length 1 has the following vertices:
- ,
- ,
- ,
- ,
- ,
- ,
- ,
- ,
- ,
- .
where is the distance between the octagonal antiprism's center and the center of one of its bases.
\pm