Dodecahedral symmetry
(Redirected from H3)
Jump to navigation
Jump to search
Dodecahedral symmetry | |
---|---|
![]() | |
Rank | 3 |
Space | Spherical |
Order | 120 |
Info | |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() |
Elements | |
Axes | 6 × (I2(10)×A1)/2, 10 × (G2×A1)/2, 15 × K3 |
Related polytopes | |
Omnitruncate | Great rhombicosidodecahedron |
Dodecahedral symmetry, also known as icosahedral symmetry, doic symmetry, and notated as H3, is a 3D spherical Coxeter group. It is the symmetry group of the dodecahedron and icosahedron.
Subgroups[edit | edit source]
- H3+ (maximal)
- B3/2 (maximal)
- A3+
- (I2(10)×A1)/2 (maximal)
- (I2(10)+×A1)/2
- (G2×A1)/2 (maximal)
- (G2+×A1)/2
- (H2×A1)+
- H2×I
- H2+×I
- (A2×A1)+
- A2×I
- A2+×I
- K3
- K3+
- K2×I
- K2+×A1
- K2+×I
- ±(I×I×I)
- A1×I×I
- I×I×I
Convex polytopes with H3 symmetry[edit | edit source]
- Dodecahedron (regular)/Icosahedron (regular)
- Icosidodecahedron (isogonal)/Rhombic triacontahedron (isotopic)
- Truncated dodecahedron (isogonal)/Triakis icosahedron (isotopic)
- Truncated icosahedron (isogonal)/Pentakis dodecahedron (isotopic)
- Small rhombicosidodecahedron (isogonal)/Deltoidal hexecontahedron (isotopic)
- Great rhombicosidodecahedron (isogonal)/Disdyakis triacontahedron (isotopic)
Wythoffians with H3 symmetry[edit | edit source]
Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|
Dodecahedron | doe | {5,3} | x5o3o | |
Truncated dodecahedron | tid | t{5,3} | x5x3o | |
Icosidodecahedron | id | r{5,3} | o5x3o | |
Truncated icosahedron | ti | t{3,5} | o5x3x | |
Icosahedron | ike | {3,5} | o5o3x | |
Small rhombicosidodecahedron | srid | rr{5,3} | x5o3x | |
Great rhombicosidodecahedron | grid | tr{5,3} | x5x3x | |
Snub dodecahedron | snid | sr{5,3} | s5s3s |
Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|
Great icosahedron | gike | {3,5/2} | x3o5/2o (![]() ![]() ![]() ![]() ![]() |
|
Truncated great icosahedron | tiggy | t{3,5/2} | x3x5/2o (![]() ![]() ![]() ![]() ![]() |
|
Great icosidodecahedron | gid | r{3,5/2} | o3x5/2o (![]() ![]() ![]() ![]() ![]() |
|
Truncated great stellated dodecahedron (degenerate, ike+2gad) | t{5/2,3} | o3x5/2x (![]() ![]() ![]() ![]() ![]() |
||
Great stellated dodecahedron | gissid | {5/2,3} | o3o5/2x (![]() ![]() ![]() ![]() ![]() |
|
Small complex rhombicosidodecahedron (degenerate, sidtid+rhom) | sicdatrid | rr{3,5/2} | x3o5/2x (![]() ![]() ![]() ![]() ![]() |
|
Truncated great icosidodecahedron (degenerate, ri+12(10/2)) | tr{3,5/2} | x3x5/2x (![]() ![]() ![]() ![]() ![]() |
||
Great snub icosidodecahedron | gosid | sr{3,5/2} | s3s5/2s (![]() ![]() ![]() ![]() ![]() |
Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|
Great stellated dodecahedron | gissid | {5/3,3} | x5/3o3o (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Quasitruncated great stellated dodecahedron | quit gissid | t{5/3,3} | x5/3x3o (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Great icosidodecahedron | gid | r{3,5/3} | o5/3x3o (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Truncated great icosahedron | tiggy | t{3,5/3} | o5/3x3x (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Great icosahedron | gike | {3,5/3} | o5/3o3x (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Quasirhombicosidodecahedron | qrid | rr{3,5/3} | x5/3o3x (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Great quasitruncated icosidodecahedron | gaquatid | tr{3,5/3} | x5/3x3x (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Great inverted snub icosidodecahedron | gisid | sr{3,5/3} | s5/3s3s (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|
Great dodecahedron | gad | {5,5/2} | x5o5/2o (![]() ![]() ![]() ![]() ![]() |
|
Truncated great dodecahedron | tigid | t{5,5/2} | x5x5/2o (![]() ![]() ![]() ![]() ![]() |
|
Dodecadodecahedron | did | r{5,5/2} | o5x5/2o (![]() ![]() ![]() ![]() ![]() |
|
Truncated small stellated dodecahedron (degenerate, triple cover of doe) | t{5/2,5} | o5x5/2x (![]() ![]() ![]() ![]() ![]() |
||
Small stellated dodecahedron | sissid | {5/2,5} | o5o5/2x (![]() ![]() ![]() ![]() ![]() |
|
Rhombidodecadodecahedron | raded | rr{5,5/2} | x5o5/2x (![]() ![]() ![]() ![]() ![]() |
|
Truncated dodecadodecahedron (degenerate, sird+12(10/2)) | tr{5,5/2} | x5x5/2x (![]() ![]() ![]() ![]() ![]() |
||
Snub dodecadodecahedron | siddid | sr{5,5/2} | s5s5/2s (![]() ![]() ![]() ![]() ![]() |
Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|
Small stellated dodecahedron | sissid | {5/3,5} | x5/3o5o (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Quasitruncated small stellated dodecahedron | quit sissid | t{5/3,5} | x5/3x5o (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Dodecadodecahedron | did | r{5,5/3} | o5/3x5o (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Truncated great dodecahedron | tigid | t{5,5/3} | o5/3x5x (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Great dodecahedron | gad | {5,5/3} | o5/3o5x (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Complex ditrigonal rhombidodecadodecahedron (degenerate, ditdid+rhom) | cadditradid | rr{5,5/3} | x5/3o5x (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Quasitruncated dodecadodecahedron | quitdid | tr{5,5/3} | x5/3x5x (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Inverted snub dodecadodecahedron | isdid | sr{5,5/3} | s5/3s5s (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Name | OBSA | CD diagram | Picture |
---|---|---|---|
Small ditrigonary icosidodecahedron | sidtid | x5/2o3o3*a (![]() ![]() ![]() |
|
(degenerate, double cover of id) | x5/2x3o3*a (![]() ![]() ![]() |
||
(degenerate, double cover of ike) | o5/2o3x3*a (![]() ![]() ![]() |
||
Small icosicosidodecahedron | siid | x5/2o3x3*a (![]() ![]() ![]() |
|
(degenerate, double cover of ti) | x5/2x3x3*a (![]() ![]() ![]() |
||
Small snub icosicosidodecahedron | seside | s5/2s3s3*a (![]() ![]() ![]() |
Name | OBSA | CD diagram | Picture |
---|---|---|---|
Great ditrigonary icosidodecahedron | gidtid | x3/2o3o5*a (![]() ![]() ![]() |
|
(degenerate, 3ike+gad) | x3/2x3o5*a (![]() ![]() ![]() |
||
(degenerate, double cover of gike) | o3/2x3o5*a (![]() ![]() ![]() |
||
Great icosicosidodecahedron | giid | o3/2x3x5*a (![]() ![]() ![]() |
|
Great ditrigonary icosidodecahedron | gidtid | o3/2o3x5*a (![]() ![]() ![]() |
|
(degenerate, double cover of seihid) | x3/2o3x5*a (![]() ![]() ![]() |
||
(degenerate, siddy+20(6/2)) | x3/2x3x5*a (![]() ![]() ![]() | ||
(degenerate, 5ike+gad) | s3/2s3s5*a |
Name | OBSA | CD diagram | Picture |
---|---|---|---|
Ditrigonary dodecadodecahedron | ditdid | ![]() ![]() ![]() |
|
Small complex icosidodecahedron (degenerate, ike+gad) | cid | ![]() ![]() ![]() |
|
Great complex icosidodecahedron (degenerate, sissid+gike) | gacid | ![]() ![]() ![]() |
|
Icosidodecadodecahedron | ided | ![]() ![]() ![]() |
|
Small ditrigonal dodecicosidodecahedron | sidditdid | ![]() ![]() ![]() |
|
Great ditrigonal dodecicosidodecahedron | gidditdid | ![]() ![]() ![]() |
|
Icosidodecatruncated icosidodecahedron | idtid | ![]() ![]() ![]() |
|
Snub icosidodecadodecahedron | sided | ![]() ![]() ![]() |
Name | OBSA | CD diagram | Picture |
---|---|---|---|
Great complex icosidodecahedron (degenerate, sissid+gike) | gacid | x5/3o5/2o3*a (![]() ![]() ![]() |
|
Great dodecicosidodecahedron | gaddid | x5/3x5/2o3*a (![]() ![]() ![]() |
|
(degenerate, double cover of gissid) | o5/3x5/2o3*a (![]() ![]() ![]() |
||
(degenerate, ditdid+gidtid) | o5/3x5/2x3*a (![]() ![]() ![]() |
||
Great complex icosidodecahedron (degenerate, sissid+gike) | gacid | o5/3o5/2x3*a (![]() ![]() ![]() |
|
(degenerate, double cover of sidhei) | x5/3o5/2x3*a (![]() ![]() ![]() |
||
(degenerate, giddy+12(10/2)) | x5/3x5/2x3*a (![]() ![]() ![]() |
||
Great snub dodecicosidodecahedron | gisdid | s5/3s5/2s2*a (![]() ![]() ![]() |