Hecatonicosachoric symmetry
(Redirected from H4)
Jump to navigation
Jump to search
Hecatonicosachoric symmetry | |
---|---|
Rank | 4 |
Space | Spherical |
Order | 14400 |
Info | |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Related polytopes | |
Omnitruncate | Great disprismatohexacosihecatonicosachoron |
Hecatonicosachoric symmetry, also known as hexacosichoric symmetry, hyic symmetry, and notated H4, is a 4D spherical Coxeter group. It is the symmetry group of the regular hecatonicosachoron and hexacosichoron.
Convex polytopes with H4 symmetry[edit | edit source]
- Hecatonicosachoron (regular)/Hexacosichoron (regular)
- Rectified hecatonicosachoron (isogonal)/Joined hecatonicosachoron (isotopic)
- Rectified hexacosichoron (isogonal)/Joined hexacosichoron (isotopic)
- Truncated hecatonicosachoron (isogonal)/Tetrakis hexacosichoron (isotopic)
- Truncated hexacosichoron (isogonal)/Dodecakis hecatonicosachoron (isotopic)
- Hexacosihecatonicosachoron (isogonal)/Disphenoidal trischiliahexacosichoron (isotopic)
- Small rhombated hecatonicosachoron (isogonal)/Great notched trischiliahexacosichoron (isotopic)
- Small rhombated hexacosichoron (isogonal)/Small notched trischiliahexacosichoron (isotopic)
- Great rhombated hecatonicosachoron (isogonal)/Great sphenoidal heptachiliadiacosichoron (isotopic)
- Great rhombated hexacosichoron (isogonal)/Small sphenoidal heptachiliadiacosichoron (isotopic)
- Small disprismatohexacosihecatonicosachoron (isogonal)/Triangular-antitegmatic dischiliatetracosichoron (isotopic)
- Prismatorhombated hecatonicosachoron (isogonal)/Deltopyramidal heptachiliadiacosichoron (isotopic)
- Prismatorhombated hexacosichoron (isogonal)/Rhombipyramidal heptachiliadiacosichoron (isotopic)
- Great disprismatohexacosihecatonicosachoron (isogonal)/Tetrahedral myriatetrachiliatetracosichoron (isotopic)