Hecatonicosachoron

From Polytope Wiki
Jump to navigation Jump to search
Hecatonicosachoron
Schlegel wireframe 120-cell.png
Rank4
TypeRegular
SpaceSpherical
Notation
Bowers style acronymHi
Coxeter diagramx5o3o3o (CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png)
Schläfli symbol{5,3,3}
Elements
Cells120 dodecahedra
Faces720 pentagons
Edges1200
Vertices600
Vertex figureTetrahedron, edge length (1+5)/2 120-cell verf.png
Edge figuredoe 5 doe 5 doe 5
Measures (edge length 1)
Circumradius
Edge radius
Face radius
Inradius
Hypervolume
Dichoral angle144°
Central density1
Number of pieces120
Level of complexity1
Related polytopes
ArmyHi
RegimentHi
DualHexacosichoron
ConjugateGreat grand stellated hecatonicosachoron
Abstract properties
Flag count14400
Euler characteristic0
Topological properties
OrientableYes
Properties
SymmetryH4, order 14400
ConvexYes
NatureTame

The hecatonicosachoron, or hi, also commonly called the 120-cell, is one of the 6 convex regular polychora. It has 120 dodecahedra as cells, joining 3 to an edge and 4 to a vertex.

It is the first in an infinite family of isochoric dodecahedral swirlchora (the dodecaswirlic hecatonicosachoron), as its cells form 12 rings of 10 cells. It is also the first in a series of isochoric rhombic triacontahedral swirlchora (the rhombitriacontaswirlic hecatonicosachoron).

Gallery[edit | edit source]

Vertex coordinates[edit | edit source]

The vertices of a hecatonicosachoron of edge length 1, centered at the origin, are given by all permutations of:

together with all the even permutations of:

Surtope angles[edit | edit source]

The surtope angle represents the fraction of solid space occupied by the angle.

  • A2: 0:48.00.00 = 144° =2/5 Dichoral or Margin angle. There is a decagon of dodecahedra girthing the figure.
  • A3: 0:42.00.00 = 252° E =7/20
  • A4 0:38.24.00 = 191/600

The higher order angles might be derived from the tiling x5o3o3o5/2o, which is piecewise-finite (ie any surtope can be 'completed')

Representations[edit | edit source]

A hecatonicosachoron has the following Coxeter diagrams:

  • x5o3o3o (full symmetry)
  • xofoFofFxFfBo5oxofoFfxFfFoB BoFfFxfoFofox5oBfFxFfFofoxo&#zx (H2×H2 symmetry)
  • ooCfoBxoFf3oooooofffx3CooBfoFxof *b3oCooBfoFxf&#zx (D4 symmetry, C=2F)
  • xfooofFxFfooofx5oofxfooooofxfoo3ooofxfoFofxfooo&#xt (H3 axial, cell-first)

Related polychora[edit | edit source]

Uniform polychoron compounds composed of hecatonicosachora include:

o5o3o3o truncations
Name OBSA CD diagram Picture
Hecatonicosachoron hi x5o3o3o
Schlegel wireframe 120-cell.png
Truncated hecatonicosachoron thi x5x3o3o
Schlegel half-solid truncated 120-cell.png
Rectified hecatonicosachoron rahi o5x3o3o
Rahi.png
Hexacosihecatonicosachoron xhi o5x3x3o
Xhi.png
Rectified hexacosichoron rox o5o3x3o
Rectified 600-cell schlegel halfsolid.png
Truncated hexacosichoron tex o5o3x3x
Schlegel half-solid truncated 600-cell.png
Hexacosichoron ex o5o3o3x
Schlegel wireframe 600-cell.png
Small rhombated hecatonicosachoron srahi x5o3x3o
Srahi.png
Great rhombated hecatonicosachoron grahi x5x3x3o
Cantitruncated 120-cell.png
Small rhombated hexacosichoron srix o5x3o3x
Srix.png
Great rhombated hexacosichoron grix o5x3x3x
Cantitruncated 600-cell.png
Small disprismatohexacosihecatonicosachoron sidpixhi x5o3o3x
Runcinated 120-cell.png
Prismatorhombated hexacosichoron prix x5x3o3x
Runcitruncated 120-cell.png
Prismatorhombated hecatonicosachoron prahi x5o3x3x
Runcitruncated 600-cell.png
Great disprismatohexacosihecatonicosachoron gidpixhi x5x3x3x
Omnitruncated 120-cell wireframe.png

Isogonal derivatives[edit | edit source]

Substitution by vertices of these following elements will produce these convex isogonal polychora:

External links[edit | edit source]

  • Klitzing, Richard. "hi".